Influence of near-surface soil moisture on regional scale heat fluxes: model results using microwave remote sensing data from SGP97

2001 ◽  
Vol 39 (8) ◽  
pp. 1719-1728 ◽  
Author(s):  
R. Bindlish ◽  
W.P. Kustas ◽  
A.N. French ◽  
G.R. Diak ◽  
J.R. Mecikalski
2018 ◽  
Vol 65 (3) ◽  
pp. 481-499 ◽  
Author(s):  
Rida Khellouk ◽  
Ahmed Barakat ◽  
Abdelghani Boudhar ◽  
Rachid Hadria ◽  
Hayat Lionboui ◽  
...  

Author(s):  
T. J. Jackson ◽  
E. T. Engman

The upper few centimeters of the soil are extremely important because they are the interface between soil science and land-atmosphere research and are also the region of the greatest amount of organic material and biological activity (Wei, 1995). Passive microwave remote sensing can provide a measurement of the surface soil moisture for a range of cover conditions within reasonable error bounds (Jackson and Schmugge, 1989). Since spatially distributed and multitemporal observations of surface soil moisture are rare, the use of these data in hydrology and other disciplines has not been fully explored or developed. The ability to observe soil moisture frequently over large regions could significantly improve our ability to predict runoff and to partition incoming radiant energy into latent and sensible heat fluxes at a variety of scales up to those used in global circulation models. Temporal observation of surface soil moisture may also provide the information needed to determine key soil parameters, such as saturated conductivity (Ahuja et al., 1993). These sensors provide a spatially integrated measurement that may aid in understanding the upscaling of essential soil parameters from point observations. Some specific issues in soil hydrology that could be addressed with remotely sensed observations as described above include (Wei, 1995): (1) criteria for soil mapping based on spatial and temporal variance structures of state variables, (2) identifying scales of observation, (3) determining soil physical properties within profiles based on surface observations, (4) quantifying correlation lengths of soil moisture in time and space relative to precipitation and evaporation, (5) examining the covariance structure between soil water properties and those associated with water and heat fluxes at the land-atmosphere boundary at various scales, and (6) determining if vertical and horizontal fluxes of energy and matter below the surface can be ascertained from surface soil moisture distributions. In this chapter, the basis of microwave remote sensing of soil moisture will be presented along with the advantages and disadvantages of different techniques. Currently available sensor systems will be described.


Sign in / Sign up

Export Citation Format

Share Document