Surface soil moisture inversion based on defs-ga-bp model using sentinel-1/2 remote sensing data

Author(s):  
C. Zhang ◽  
L. Min ◽  
J. Zhao
2018 ◽  
Vol 65 (3) ◽  
pp. 481-499 ◽  
Author(s):  
Rida Khellouk ◽  
Ahmed Barakat ◽  
Abdelghani Boudhar ◽  
Rachid Hadria ◽  
Hayat Lionboui ◽  
...  

2018 ◽  
Vol 56 (9) ◽  
pp. 5433-5442 ◽  
Author(s):  
Yawei Wang ◽  
Jian Peng ◽  
Xiaoning Song ◽  
Pei Leng ◽  
Ralf Ludwig ◽  
...  

2019 ◽  
pp. 1-16
Author(s):  
Rida Khellouk ◽  
Ahmed Barakat ◽  
Aafaf El Jazouli ◽  
Abdelghani Boudhar ◽  
Hayat Lionboui ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3223
Author(s):  
Hamed Adab ◽  
Renato Morbidelli ◽  
Carla Saltalippi ◽  
Mahmoud Moradian ◽  
Gholam Abbas Fallah Ghalhari

Soil moisture is an integral quantity parameter in hydrology and agriculture practices. Satellite remote sensing has been widely applied to estimate surface soil moisture. However, it is still a challenge to retrieve surface soil moisture content (SMC) data in the heterogeneous catchment at high spatial resolution. Therefore, it is necessary to improve the retrieval of SMC from remote sensing data, which is important in the planning and efficient use of land resources. Many methods based on satellite-derived vegetation indices have already been developed to estimate SMC in various climatic and geographic conditions. Soil moisture retrievals were performed using statistical and machine learning methods as well as physical modeling techniques. In this study, an important experiment of soil moisture retrieval for investigating the capability of the machine learning methods was conducted in the early spring season in a semi-arid region of Iran. We applied random forest (RF), support vector machine (SVM), artificial neural network (ANN), and elastic net regression (EN) algorithms to soil moisture retrieval by optical and thermal sensors of Landsat 8 and knowledge of land-use types on previously untested conditions in a semi-arid region of Iran. The statistical comparisons show that RF method provided the highest Nash–Sutcliffe efficiency value (0.73) for soil moisture retrieval covered by the different land-use types. Combinations of surface reflectance and auxiliary geospatial data can provide more valuable information for SMC estimation, which shows promise for precision agriculture applications.


2016 ◽  
Vol 7 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Xingming Zheng ◽  
Kai Zhao ◽  
Yanling Ding ◽  
Tao Jiang ◽  
Shiyi Zhang ◽  
...  

Northeast China (NEC) has become one of China's most obvious examples of climate change because of its rising warming rate of 0.35 °C/10 years. As the indicator of climate change, the dynamic of surface soil moisture (SSM) has not been assessed yet. We investigated the spatiotemporal dynamics of SSM in NEC using a 32-year SSM product and found the following. (1) SSM displayed the characteristics of being dry in the west and wet in the east and decreased with time. (2) The seasonal difference was found for the temporal dynamics of SSM: it increased in summer and decreased in spring and autumn. (3) For all four regions studied, the temporal dynamics of SSM were similar to those of the whole of NEC, but with different rates of SSM change. Moreover, SSM in regions B and D had a lower spatial variance than the other two regions because of the stable spatial pattern of cropland. (4) The change rates for SSM were consistent with that observed for the warming rates, which indicated that SSM levels derived from remote sensing data will correlate with climate change. In summary, a wetter summer and a drier spring and autumn were observed in NEC over the past 30 years.


Sign in / Sign up

Export Citation Format

Share Document