soil hydrology
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 51)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Dóra Hidy ◽  
Zoltán Barcza ◽  
Roland Hollós ◽  
Laura Dobor ◽  
Tamás Ács ◽  
...  

Abstract. Terrestrial biogeochemical models are essential tools to quantify climate-carbon cycle feedback and plant-soil relations from local to global scale. In this study, theoretical basis is provided for the latest version of Biome-BGCMuSo biogeochemical model (version 6.2). Biome-BGCMuSo is a branch of the original Biome-BGC model with a large number of developments and structural changes. Earlier model versions performed poorly in terms of soil water content (SWC) dynamics in different environments. Moreover, lack of detailed nitrogen cycle representation was a major limitation of the model. Since problems associated with these internal drivers might influence the final results and parameter estimation, additional structural improvements were necessary. During the developments we took advantage of experiences from the crop modeller community where internal process representation has a long history. In this paper the improved soil hydrology and soil carbon/nitrogen cycle calculation methods are described in detail. Capabilities of the Biome-BGCMuSo v6.2 model are demonstrated via case studies focusing on soil hydrology and soil organic carbon content estimation. Soil hydrology related results are compared to observation data from an experimental lysimeter station. The results indicate improved performance for Biome-BGCMuSo v6.2 compared to v4.0 (explained variance increased from 0.121 to 0.8 for SWC, and from 0.084 to 0.46 for soil evaporation; bias changed from −0.047 to 0.007 m3 m−3 for SWC, and from −0.68 mm day−1 to −0.2 mm day−1 for soil evaporation). Sensitivity analysis and optimization of the decomposition scheme is presented to support practical application of the model. The improved version of Biome-BGCMuSo has the ability to provide more realistic soil hydrology representation and nitrification/denitrification process estimation which represents a major milestone.


2021 ◽  
Author(s):  
◽  
Tapuwa Marapara

<p>During the last two decades there has been increasing interest in the role of forests and wetlands as flood mitigating tools due to growing concerns regarding the sustainability of many traditional engineering flood defences such as dykes, sea walls and dams. In forests, the role is facilitated by the interaction between trees, soil and water. Specifically trees reduce surface runoff and prevent flooding through increased evapotranspiration and canopy interception and enhance physical and hydraulic properties of soil that are critical for the absorption and retention of flood waters by the soil. It is increasingly realised that the answer to flood mitigation is not a blanket recommendation to “plant trees”. This is because the role of trees varies spatially and temporally as a function of climate, topography, rainfall properties, soil type and condition, catchment scale and geology, among others. For example, where trees are present in wetlands, particularly forested wetlands, the mechanisms by which trees interact with soil and water are similar to that in forests but because of a high water table, the impact of trees may be reduced. Therefore, the mere presence of forests and forested wetlands will not necessarily deliver flood risk management.  The purpose of this study was to explore the effectiveness of trees as flood mitigating tools under various bio-geo climatic factors in forests and forested wetland environments. Three forms of investigation were followed to fulfil this purpose.  A detailed literature review was carried out to assess the role of trees and forests as flood mitigation tools under changing climate, topography, species type, rainfall properties, soil type and condition, catchment scale and geology. A field experiment was carried out to collect data and analyse the effect of trees on soil physical and hydraulic properties that include bulk density, saturated hydraulic conductivity, soil organic carbon, soil moisture content, matric potential and soil moisture retention in a previously forested wetland undergoing restoration in New Zealand. A spatially explicit decision support tool, the Land Use Capability Indicator (LUCI) was then used to determine appropriate areas where intervention can be targeted to optimise the role of trees as flood mitigating tools in previously forested wetlands undergoing restoration.  The detailed review identified a major data gap in the role of trees under hydric conditions (high water table), along with uncertainties on their effectiveness in large catchments (>˜40 km²) and in extreme rainfall events. The field experiment provided the first set of soil hydrology data from an ephemeral wetland in New Zealand showing the benefits of newly established trees in improving hydraulic conductivity of soils. The soil hydrology data is a useful baseline for continuous monitoring of the forested wetlands undergoing restoration. The use of the Land Use Capability Indicator was its first application for the optimisation of flood mitigation in a forested wetland. Its suggested target areas are not necessarily conducive for survival of some tree species, although if suitable species are established, flood risk mitigation could be maximised. Further research on what native species are best for what conditions and in what combinations is recommended, to increase survival in the proposed target areas.</p>


2021 ◽  
Author(s):  
◽  
Tapuwa Marapara

<p>During the last two decades there has been increasing interest in the role of forests and wetlands as flood mitigating tools due to growing concerns regarding the sustainability of many traditional engineering flood defences such as dykes, sea walls and dams. In forests, the role is facilitated by the interaction between trees, soil and water. Specifically trees reduce surface runoff and prevent flooding through increased evapotranspiration and canopy interception and enhance physical and hydraulic properties of soil that are critical for the absorption and retention of flood waters by the soil. It is increasingly realised that the answer to flood mitigation is not a blanket recommendation to “plant trees”. This is because the role of trees varies spatially and temporally as a function of climate, topography, rainfall properties, soil type and condition, catchment scale and geology, among others. For example, where trees are present in wetlands, particularly forested wetlands, the mechanisms by which trees interact with soil and water are similar to that in forests but because of a high water table, the impact of trees may be reduced. Therefore, the mere presence of forests and forested wetlands will not necessarily deliver flood risk management.  The purpose of this study was to explore the effectiveness of trees as flood mitigating tools under various bio-geo climatic factors in forests and forested wetland environments. Three forms of investigation were followed to fulfil this purpose.  A detailed literature review was carried out to assess the role of trees and forests as flood mitigation tools under changing climate, topography, species type, rainfall properties, soil type and condition, catchment scale and geology. A field experiment was carried out to collect data and analyse the effect of trees on soil physical and hydraulic properties that include bulk density, saturated hydraulic conductivity, soil organic carbon, soil moisture content, matric potential and soil moisture retention in a previously forested wetland undergoing restoration in New Zealand. A spatially explicit decision support tool, the Land Use Capability Indicator (LUCI) was then used to determine appropriate areas where intervention can be targeted to optimise the role of trees as flood mitigating tools in previously forested wetlands undergoing restoration.  The detailed review identified a major data gap in the role of trees under hydric conditions (high water table), along with uncertainties on their effectiveness in large catchments (>˜40 km²) and in extreme rainfall events. The field experiment provided the first set of soil hydrology data from an ephemeral wetland in New Zealand showing the benefits of newly established trees in improving hydraulic conductivity of soils. The soil hydrology data is a useful baseline for continuous monitoring of the forested wetlands undergoing restoration. The use of the Land Use Capability Indicator was its first application for the optimisation of flood mitigation in a forested wetland. Its suggested target areas are not necessarily conducive for survival of some tree species, although if suitable species are established, flood risk mitigation could be maximised. Further research on what native species are best for what conditions and in what combinations is recommended, to increase survival in the proposed target areas.</p>


2021 ◽  
Author(s):  
Donatella Zona ◽  
Peter Lafleur ◽  
Koen Hufkens ◽  
Barbara Bailey ◽  
Beniamino Gioli ◽  
...  

Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic.Here we found that earlier snowmelt was associated with more net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence for a water stress that affected GPP in the peak and late growing season. Our results suggest that climate change and the associated increased length in the growing season might not benefit these northern tundra ecosystems if they are not able to continue sequestering CO2 later in the season.


2021 ◽  
Vol 54 (9) ◽  
pp. 1367-1374
Author(s):  
Ye. V. Shein ◽  
A. G. Bolotov ◽  
A. V. Dembovetskii

Abstract Soil hydrology has deep Russian roots, which are primarily related to the theory of soil hydrological constants and their practical application. These constants have been used to assess the hydrological soil conditions in stationary observations, for which attempts to arrange regular hydrological observations in the landscape faced impracticable complexity of work and calculations and provided unreliable quantitative predictions. At present, there are new opportunities for experimental research, digital analysis, and prediction of hydrological indicators of soils in the landscape. A new quantitative approach to the use of digital technologies for monitoring soil water and temperature in the soils of agricultural landscapes, their dynamics, and their probabilistic calculations has been developed. Based on the soil map, it is proposed to create an information and measurement system with the studied thermal and hydrophysical characteristics of soils using mathematical models to calculate the dynamics of moisture and temperature for given periods and conditions of different availability of heat and precipitation, which allows us to quantify the availability of moisture reserves in the soils of the agricultural landscape. This system of observations, assessment, and forecast includes the use of modern technologies for determining soil water content and temperature, the adaptation of predictive physically based models for calculating the dynamics of moisture reserves depending on the availability of precipitation and conditions at the lower boundary of soil profiles. The paper deals with the hydrological analysis of soils by the example of the agricultural landscape of the Zelenograd station of the Dokuchaev Soil Science Institute in the village of El’digino, Pushkino district, Moscow oblast.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 563-584
Author(s):  
Florian Schneider ◽  
Michael Klinge ◽  
Jannik Brodthuhn ◽  
Tino Peplau ◽  
Daniela Sauer

Abstract. The central Mongolian forest steppe forms a transition between different ecozones and is as such particularly sensitive to environmental changes. It is commonly affected by disturbances such as logging and forest fires. Intensified drought events aggravate stress on the trees that are anyway at their drier limit in the forest steppe. Climate change increases evapotranspiration and reduces the distribution of discontinuous permafrost, which leads to drier soil conditions. The motivation for this study came about through our previous observation that forest stands show great differences with respect to their recovery after disturbance by fire or logging. Sometimes, no regrowth of trees takes place at all. As water availability is the main limiting factor of forest growth in this region, we hypothesised that differences in soil hydrology control the forest recovery pattern. To test this hypothesis, we analysed soil properties under forests, predominantly consisting of Siberian larch (Larix sibirica Ledeb.), in the forest steppe of the northern Khangai Mountains, central Mongolia. We distinguished the following four vegetation categories: (1) near-natural forest (FOR), (2) steppe close to the forest (STE), (3) disturbed forest with regrowth of trees (DWIR), and (4) disturbed forest showing no regrowth of trees (DNOR). A total of 54 soil profiles were described in the field and sampled for soil chemical, physical, and hydrological analysis. We found a significant difference in soil texture between soils under DWIR and DNOR. Sand generally dominated the soil texture, but soils under DWIR had more silt and clay compared to soils under DNOR. Soil pF curves showed that soils under DWIR had higher plant-available field capacity in their uppermost parts than soils under DNOR. In addition, hydraulic conductivity tended to be higher in the uppermost horizons of soils under DWIR compared to their counterparts under DNOR. Chemical properties of the soils under DWIR and DNOR showed no significant differences. We conclude that the differences in post-disturbance tree regrowth are mainly caused by different soil hydrology. High plant-available field capacity is the key factor for forest recovery under semi-arid conditions. High hydraulic conductivity in the uppermost soil horizons can further support tree regrowth because it reduces the evaporation loss and the competition of larch saplings with grasses and herbs for water. Another important factor is human impact, particularly grazing livestock on cleared forest sites, which often keeps seedlings from growing and, thus, inhibits forest recovery. None of the disturbed sites (DWIR and DNOR) had permafrost. We, thus, conclude that permafrost is no major factor for the post-disturbance tree regrowth pattern, although it generally supports tree growth in the forest steppe by preventing meltwater from seasonal ice from seeping below the root zone, thus increasing the water supply in summer.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1719
Author(s):  
Ziqi Liu ◽  
Rong She ◽  
Kangning Xiong ◽  
Yuan Li ◽  
Lulu Cai

The purpose of this study was to explore the effects of different vegetation restoration types on soil hydrology characteristics in the Karst Plateau Gorge and to clarify the soil moisture (θ) use characteristics. A barrel experiment was conducted to monitor θ and the water potential (Ψ) of three vegetation types (Zanthoxylum bungeanum (ZB), Zea mays L. (ZM), and Sophora tonkinensis (ST), Abandoned land (AL)) was used as a control to explore θ use conditions of each vegetation type. A larger surface permeability led to lower moisture storage. The soil moisture storage showed the law of ZM > ST > AL > ZB. The soil moisture storage also had obvious characteristics in dry-wet seasons. As a typical drought-tolerant crop, ZB responded more obviously to rainfall and had the highest effective replenishment amount and efficiency. Two processes were clearly involved in decreasing soil moisture, which could be divided into three stages of changes: a consumption period (CP), a moisture supplying period (SP), and a relatively stable period (RSP). CP occurred primarily in November to April, when θ was prone to water stress and required proper artificial replenishment. SP was characterized by limited rainfall replenishment in January and May, which significantly increased θ. During the rainy season, corresponding with RSP, θ fluctuated within a relatively stable range. At the end of the CP, the water shortage was more severe. In actual agricultural production, attention should be given to reasonable artificial recharge. This research aims to provide a theoretical basis for karst θ management.


2021 ◽  
Vol 11 (7) ◽  
pp. 2979
Author(s):  
Maxime Fortin Faubert ◽  
Dominic Desjardins ◽  
Mohamed Hijri ◽  
Michel Labrecque

The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided.


2021 ◽  
Vol 18 (6) ◽  
pp. 1917-1939
Author(s):  
Martina Botter ◽  
Matthias Zeeman ◽  
Paolo Burlando ◽  
Simone Fatichi

Abstract. Alpine grasslands sustain local economy by providing fodder for livestock. Intensive fertilization is common to enhance their yields, thus creating negative externalities on water quality that are difficult to evaluate without reliable estimates of nutrient fluxes. We apply a mechanistic ecosystem model, seamlessly integrating land-surface energy balance, soil hydrology, vegetation dynamics, and soil biogeochemistry, aiming at assessing the grassland response to fertilization. We simulate the major water, carbon, nutrient, and energy fluxes of nine grassland plots across the broad European Alpine region. We provide an interdisciplinary model evaluation by confirming its performance against observed variables from different datasets. Subsequently, we apply the model to test the influence of fertilization practices on grassland yields and nitrate (NO3-) losses through leaching under both current and modified climate scenarios. Despite the generally low NO3- concentration in groundwater recharge, the variability across sites is remarkable, which is mostly (but not exclusively) dictated by elevation. In high-Alpine sites, short growing seasons lead to less efficient nitrogen (N) uptake for biomass production. This combined with lower evapotranspiration rates results in higher amounts of drainage and NO3- leaching to groundwater. Scenarios with increased temperature lead to a longer growing season characterized by higher biomass production and, consequently, to a reduction of water leakage and N leaching. While the intersite variability is maintained, climate change impacts are stronger on sites at higher elevations. The local soil hydrology has a crucial role in driving the NO3- use efficiency. The commonly applied fixed threshold limit on fertilizer N input is suboptimal. We suggest that major hydrological and soil property differences across sites should be considered in the delineation of best practices or regulations for management. Using distributed maps informed with key soil and climatic attributes or systematically implementing integrated ecosystem models as shown here can contribute to achieving more sustainable practices.


Sign in / Sign up

Export Citation Format

Share Document