scholarly journals Modeling and performance analysis of WDM transmission links employing semiconductor optical amplifiers

2001 ◽  
Vol 19 (8) ◽  
pp. 1116-1124 ◽  
Author(s):  
J. Jennen ◽  
H. de Waardt ◽  
G. Acket
2019 ◽  
Vol 9 (6) ◽  
pp. 1251 ◽  
Author(s):  
Jun Yeong Jang ◽  
Min Su Kim ◽  
Chang-Lin Li ◽  
Tae Hee Han

To address the performance bottleneck in metal-based interconnects, hybrid optical network-on-chip (HONoC) has emerged as a new alternative. However, as the size of the HONoC grows, insertion loss and crosstalk noise increase, leading to excessive laser source output power and performance degradation. Therefore, we propose a low-power scalable HONoC architecture by incorporating semiconductor optical amplifiers (SOAs). An SOA placement algorithm is developed considering insertion loss and crosstalk noise. Furthermore, we establish a worst-case crosstalk noise model of SOA-enabled HONoC and induce optimized SOA gains with respect to power consumption and performance, respectively. Extensive simulations for worst-case signal-to-noise ratio (SNR) and power consumption are conducted under various traffic patterns and different network sizes. Simulation results show that the proposed SOA-enabled HONoC architecture and the associated algorithm help sustain the performance as network size increases without additional laser source power.


Sign in / Sign up

Export Citation Format

Share Document