Optimal guidance for acceleration constrained missile and maneuvering target

1990 ◽  
Vol 26 (4) ◽  
pp. 618-624 ◽  
Author(s):  
I. Rusnak ◽  
L. Meir
2022 ◽  
Author(s):  
Hongyan Li ◽  
Shaoming He ◽  
Jiang Wang ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos

2015 ◽  
Vol 119 (1220) ◽  
pp. 1287-1299 ◽  
Author(s):  
X. Xu ◽  
Y. Liang

Abstract In order to increase the effectiveness of interceptor missile, velocity rendezvous angle control is required in the terminal phase. The purpose of this paper is to obtain an optimal guidance law which can achieve specified velocity rendezvous angle as well as zero terminal miss distance. A biased optimal guidance law based on a simplified mathematical model is deduced for interceptors engaging against invasion aircraft. Different from previous literatures on this issue, the presented guidance law suitable for intercepting high-speed maneuvering target. Another advantage is, under centimeter level miss distance setting, the guidance law needs smaller guidance command near the terminal time, which can successfully avoid command saturation. Simulation results demonstrate the effectiveness of the presented guidance law.


Sign in / Sign up

Export Citation Format

Share Document