miss distance
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 1)

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 358
Author(s):  
Shilei Zhao ◽  
Wanchun Chen ◽  
Liang Yang

This paper aims to develop an optimal guidance law for exo-atmospheric interception, in which impact-angle constraint and acceleration limit are considered. Firstly, an optimal control problem with constraints on terminal miss and impact-angle is formulated, in which the control energy performance index is weighted by a power function of the time-to-go. The closed-loop guidance command, which is expressed as a linear combination of zero-effort miss distance and the zero-effort angle error, is derived using a traditional order reduction transformation. Then, an analytical solution to the maximal acceleration during the flight is obtained by analyzing the boundary points and critical points of the guidance command curve. It is found that the maximal acceleration is a function of the weighted gain in the performance index. Therefore, the maximal acceleration can be efficiently limited by using the variable weighted gain. Furthermore, the relationship between the total control energy and the weighted gain is studied. As a result, a systematic method is proposed for selecting the weighted gain so as to meet the constraint of the acceleration while the total control energy is minimal. Nonlinear simulations have been carried out to test the performance of the proposed method. The results show that this method performs well in intercepting the maneuvering target with a negligible miss distance and intercept angle error. And it can tolerate a stricter acceleration limit in comparison with the typical method.


2021 ◽  
Vol 51 (1) ◽  
pp. 125-147
Author(s):  
Bogusław Czechowicz ◽  
Teresa Buczkowska-Murawska

Abstract The article presents the method of using a modified acoustic miss distance indicator applied together with the set of controlled aerial target imitators (ZSMCP) Jaskółka “Swallow” operated in the Polish Armed Forces. The described method enables the implementation of controlling and testing the new CZT imitators and inspect the technical condition of these, which are still operated.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Timm ◽  
Lydie Leung ◽  
Kelvin Anggara ◽  
John C. Polanyi

AbstractIn Surface-Aligned-Reactions (SAR), the degrees of freedom of chemical reactions are restricted and therefore the reaction outcome is selected. Using the inherent corrugation of a Cu(110) substrate the adsorbate molecules can be positioned and aligned and the impact parameter, the collision miss-distance, can be chosen. Here, substitution reaction for a zero impact parameter collision gives an outcome which resembles the classic Newton’s cradle in which an incident mass ‘knocks-on’ the same mass in the collision partner, here F + CF3 → (CF3)′ + (F)′ at a copper surface. The mechanism of knock-on was shown by Scanning Tunnelling Microscopy to involve reversal of the CF3 umbrella as in Walden inversion, with ejection of (F)′ product along the continuation of the F-reagent direction of motion, in collinear reaction.


2021 ◽  
Vol 71 (1) ◽  
pp. 102-107
Author(s):  
M.V.K.S. Prasad ◽  
Patri Sreehari Rao ◽  
Jagannath Nayak

Interceptor missiles are designed to destroy enemy targets in air. Targets can be destroyed either in atmosphere or out of atmosphere. So for Air Defence scenario, a two layer protection system is required with one taking care of exo atmosphere and another endo atmosphere. In this Air Defence scenario, irrespective of target trajectory interceptor should neutralise it. So the control, guidance are to be designed and validated thoroughly with various scenarios of interceptor and target. These interceptors sense the rates from rate gyroscopes and accelerations from accelerometers which are fitted on board the interceptor. The navigation algorithm calculates the interceptor’s position and velocity from these rates and accelerations from time to time. Using these interceptor data and target information received from ground RADAR or on board seeker, guidance calculates accelerations demand and subsequently rate demand. The control algorithm runs in on board mission computer along with guidance. The control algorithm calculates the commanded rate and eventually commanded deflections to the control fins to move towards the target. The fins have to move as per commanded deflections to meet the mission objective of hitting the target. But the load known as aeroload which comes on the control fins during mission, causes control fins not to move as per command. Due to the difference between control command and physical movement of fin, the expected path towards target deviates. This increases the miss distance and also misses the target hit. This aeroload scenario is to be simulated on ground and some feature is to be designed to take care of it during mission. By studying the control system behaviour due to load, the control autopilot is to be automatically tuned to compensate for the loss in commanded deflections. This scenario can be carried out in Hardware-in-Loop simulation (HILS) setup. Mission load conditions can be applied on hardware actuation system in HILS setup and mission performance can be seen and also with different loads and different autopilot tunings.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yue Li ◽  
Wei Li ◽  
Xiaodong Liu ◽  
Qunli Xia

We propose a new DRR (Disturbance Rejection Rate) compensation method of a roll-pitch seeker based on ESO (extended state observer). The characteristics of a roll-pitch seeker and the DRR definition of two frames of a roll-pitch seeker are analyzed. The influence of different interference torques and different frequency bandwidths on the compensation effect is analyzed. Modeling and simulation of the guidance system of a roll-pitch seeker with the parasitic loop of DRR are carried out. Influence of the new DRR compensation method on dimensionless miss distance is analyzed. Mathematical simulation is established to compare the new ESO-based DRR compensation method with the existing methods such as the feedforward method and Kalman filter method. The analysis and simulation results show that the new ESO-based DRR compensation method has the advantages of high precision, good applicability, and easy adjustment, and the new method can effectively reduce the dimensionless miss distance with different types of input errors. The research of this proposed new method can provide a reference for the latest generation air-to-air missile operations in a high-altitude and high-speed environment and the high-precision research of a roll-pitch seeker.


Author(s):  
James H. Stephenson ◽  
Michael E. Watts ◽  
Eric Greenwood ◽  
Kyle A. Pascioni

An extensive flight-test campaign has been conducted to look into developing actionable advice for pilots of today's vehicles to reduce their acoustic footprints. Ten distinct vehicles were tested at three different test ranges, with nine of the vehicles' data being documented here. Twelve pairs of turning conditions were tested to determine their effect on blade–vortex interaction noise. Each turning flight condition was evaluated using the peak A-weighted, band-limited (50–2500 Hz), sound pressure level measured throughout the maneuver. This metric was a surrogate for blade–vortex interaction (BVI) noise, and the difference between the peak values of each turning pair was investigated. That peak value difference was subsequently corrected by the offset from the intended vehicle altitude at turn initiation from the actual altitude at initiation. The corrected amplitudes were investigated and grouped into six validated actionable guidance principles that can be given to pilots to immediately reduce their acoustic footprint during operations. This generic guidance works by keeping the rotor well away from the wake throughout the maneuver, thus increasing miss distance and reducing the occurrence of objectionable BVI noise.


Sign in / Sign up

Export Citation Format

Share Document