Modified Cohen-Lee time-frequency distributions and instantaneous bandwidth of multicomponent signals

2001 ◽  
Vol 49 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
P.J. Loughlin ◽  
K.L. Davidson
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 451
Author(s):  
Jonatan Lerga ◽  
Nicoletta Saulig ◽  
Ljubiša Stanković ◽  
Damir Seršić

Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method for EEG analysis and characterization implemented in a computer-aided decision-support system that can be used to assist medical experts in interpreting EEG patterns. The computerized method utilizes EEG spectral non-stationarity, which is clearly revealed in the time–frequency distributions (TFDs) of multicomponent signals. The proposed algorithm, which is based on the modification of the Rényi entropy, called local or short-term Rényi entropy (STRE), was upgraded with a blind component separation procedure and instantaneous frequency (IF) estimation. The method was applied to EEGs of both forward and backward movements of the left and right hands, as well as to EEGs of imagined hand movements, which were captured by a 19-channel EEG recording system. The obtained results show that in a given virtual instrument, the proposed methods efficiently distinguish between real and imagined limb movements by considering their signatures in terms of the dominant EEG component’s IFs at the specified subset of EEG channels (namely, F3, F4, F7, F8, T3, and T4). Furthermore, computing the number of EEG signal components, their extraction, and IF estimation provide important information that shows potential to enhance existing clinical diagnostic techniques for detecting the intensity, location, and type of brain function abnormalities in patients with neurological motor control disorders.


2021 ◽  
pp. 107754632098638
Author(s):  
Milad Daneshvar ◽  
Pouria Salehi

The frequency signal displays are not efficient for analyzing nonstationary signals because of their inability to represent frequency changes over time. In fact, because most of the signals are real, nonstationary, and time varying, analyzing the signals in the time–frequency domain to estimate the instantaneous frequency of a signal is inevitable. The methods of estimating the instantaneous frequency of the multicomponent signals are divided into three groups, which include the methods using signal phase derivatives that are sensitive to noise, methods that calculate the number of zero points of the signal and consider the signal frequency equal to half the frequency of the zero points and are suitable for signals that can be imagined as stationary, and methods based on time–frequency distributions and distributions such as Wigner for instantaneous frequency calculations and more for instantaneous frequency calculations on nonstationary noise signals that exhibit varied time–frequency distributions. In this article, a new hybrid algorithm is used to evaluate different distribution criteria and comparing their performance in investigating one or more features of time–frequency distributions, such as resolution and energy concentration.


Sign in / Sign up

Export Citation Format

Share Document