Necessary and sufficient conditions for the controllability and observability of a class of linear, time-invariant systems with interval plants

1994 ◽  
Vol 39 (7) ◽  
pp. 1443-1447 ◽  
Author(s):  
Kaining Wang ◽  
A.N. Michel
1991 ◽  
Vol 01 (01) ◽  
pp. 1-25 ◽  
Author(s):  
SIEP WEILAND ◽  
JAN C. WILLEMS

Various conceptual definitions of dissipativeness of time invariant dynamical systems are introduced. A formal distinction is made between external and internal dissipativeness and it is shown that, under certain conditions, these notions are equivalent. A characterization of the class of internal storage functions associated with a dissipative system is given. The results are applied to the class of finite-dimensional linear time invariant systems. Necessary and sufficient conditions for dissipativeness of systems in this class are derived and the relation to LQ-theory is discussed.


2017 ◽  
Vol 68 (2) ◽  
pp. 148-152
Author(s):  
Konstadinos H. Kiritsis

Abstract In this paper, is studied the problem of simultaneous exact model matching by dynamic output feedback for square and invertible linear time invariant systems. In particular, explicit necessary and sufficient conditions are established which guarantee the solvability of the problem with stability and a procedure is given for the computation of dynamic controller which solves the problem.


Author(s):  
Pedro M. G. Ferreira

The paper studies the reliability (sensor and actuator failures) of the asymptotic disturbance rejection problem for linear time invariant systems using the factorization approach, assuming that not all loops fail simultaneously and that sensor and actuator do not fail simultaneously. The plant is two-output, i.e. two-vector-output, and the disturbance is at the measured output of the plant. Necessary and sufficient conditions are presented for the general problem and a simple solution is given for problems with stable plants.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yilun Shang

Stochastic multiagent systems have attracted much attention during the past few decades. This paper concerns the continuous-time consensus of a network of agents under directed switching communication topologies governed by a time-homogeneous Markovian process. The agent dynamics are described by linear time-invariant systems, with random noises as well as time-varying delays. Two types of network-induced delays are considered, namely, delays affecting only the output of the agents’ neighbors and delays affecting both the agents’ own output and the output of their neighbors. We present necessary and sufficient consensus conditions for these two classes of multiagent systems, respectively. The design method of consensus gains allows for decoupling the design problem from the graph properties. Numerical simulations are implemented to test the effectiveness of our obtained results as well as the tightness of necessary/sufficient conditions.


2018 ◽  
Vol 41 (8) ◽  
pp. 2328-2337 ◽  
Author(s):  
Hassan Adloo ◽  
Mohammad Hossein Shafiei

This paper presents a new general framework for adaptive event-triggered control strategy to extend average inter-event interval, while maintaining the performance of the system. The proposed event-triggering mechanism is acquired from input to state stability conditions, which is defined in terms of system states as well as an adaptation parameter. Under the Lipschitz assumption, a positive lower bound on sampling durations is also established that is essential to restrain the Zeno behavior. Applying the proposed method to linear time-invariant systems, leads to sufficient conditions to guarantee asymptotic stability in the form of matrix inequalities. Moreover, it is shown that there exist more degrees of freedom to improve the performance criterion from theoretical aspects. Finally, in order to show capability of the proposed method and its better performance compared with some recent works, numerical simulations are presented.


Sign in / Sign up

Export Citation Format

Share Document