Results on existence of smooth Lyapunov functions for (pre-)asymptotically stable hybrid systems with non-open basins of attraction

Author(s):  
Chaohong Cai ◽  
Andrew R. Teel ◽  
Rafal Goebel
Author(s):  
Shaoru Chen ◽  
Mahyar Fazlyab ◽  
Manfred Morari ◽  
George J. Pappas ◽  
Victor M. Preciado

2018 ◽  
Vol 11 (05) ◽  
pp. 1850071 ◽  
Author(s):  
Zhiting Xu ◽  
Youqing Xu

This paper is devoted to the study of the stability of a CD[Formula: see text] T cell viral infection model with diffusion. First, we discuss the well-posedness of the model and the existence of endemic equilibrium. Second, by analyzing the roots of the characteristic equation, we establish the local stability of the virus-free equilibrium. Furthermore, by constructing suitable Lyapunov functions, we show that the virus-free equilibrium is globally asymptotically stable if the threshold value [Formula: see text]; the endemic equilibrium is globally asymptotically stable if [Formula: see text] and [Formula: see text]. Finally, we give an application and numerical simulations to illustrate the main results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
V. Nosov ◽  
J. A. Meda-Campaña ◽  
J. C. Gomez-Mancilla ◽  
J. O. Escobedo-Alva ◽  
R. G. Hernández-García

The stability of autonomous dynamical switched systems is analyzed by means of multiple Lyapunov functions. The stability theorems given in this paper have finite number of conditions to check. It is shown that linear functions can be used as Lyapunov functions. An example of an exponentially asymptotically stable switched system formed by four unstable systems is also given.


2007 ◽  
Vol 10 (04) ◽  
pp. 495-503 ◽  
Author(s):  
XIA WANG ◽  
XINYU SONG

This article proposes a mathematical model which has been used to investigate the importance of lytic and non-lytic immune responses for the control of viral infections. By means of Lyapunov functions, the global properties of the model are obtained. The virus is cleared if the basic reproduction number R0 ≤ 1 and the virus persists in the host if R0 > 1. Furthermore, if R0 > 1 and other conditions hold, the immune-free equilibrium E0 is globally asymptotically stable. The equilibrium E1 exists and is globally asymptotically stale if the CTL immune response reproductive number R1 < 1 and the antibody immune response reproductive number R2 > 1. The equilibrium E2 exists and is globally asymptotically stable if R1 > 1 and R2 < 1. Finally, the endemic equilibrium E3 exists and is globally asymptotically stable if R1 > 1 and R2 > 1.


2007 ◽  
Vol 52 (7) ◽  
pp. 1264-1277 ◽  
Author(s):  
Chaohong Cai ◽  
Andrew R. Teel ◽  
Rafal Goebel

Sign in / Sign up

Export Citation Format

Share Document