scholarly journals MSV: An Algorithm for Coordinated Resource Allocation in Network Function Virtualization

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 76876-76888 ◽  
Author(s):  
Hang Li ◽  
Luhan Wang ◽  
Xiangming Wen ◽  
Zhaoming Lu ◽  
Jinyan Li
Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1173 ◽  
Author(s):  
Basheer Raddwan ◽  
Khalil AL-Wagih ◽  
Ibrahim A. Al-Baltah ◽  
Mohamed A. Alrshah ◽  
Mohammed A. Al-Maqri

Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short and long simulation runs, respectively. The impact of the number of nodes, links and paths of the service requests on the proposed scheme has been studied by solving more than 122,000 service requests. The proposed Integer Linear Programming (ILP) and heuristic schemes have reduced the execution time up to 39.58% and 6.42% compared to existing ILP and heuristic schemes, respectively. Moreover, the proposed schemes have also reduced the average embedding cost and increased the profit for the service providers.


2021 ◽  
Vol 32 (2) ◽  
pp. 295-314 ◽  
Author(s):  
Song Yang ◽  
Fan Li ◽  
Stojan Trajanovski ◽  
Ramin Yahyapour ◽  
Xiaoming Fu

2021 ◽  
Vol 11 (22) ◽  
pp. 10547
Author(s):  
Marios Gatzianas ◽  
Agapi Mesodiakaki ◽  
George Kalfas ◽  
Nikos Pleros ◽  
Francesca Moscatelli ◽  
...  

In order to cope with the ever-increasing traffic demands and stringent latency constraints, next generation, i.e., sixth generation (6G) networks, are expected to leverage Network Function Virtualization (NFV) as an enabler for enhanced network flexibility. In such a setup, in addition to the traditional problems of user association and traffic routing, Virtual Network Function (VNF) placement needs to be jointly considered. To that end, in this paper, we focus on the joint network and computational resource allocation, targeting low network power consumption while satisfying the Service Function Chain (SFC), throughput, and delay requirements. Unlike the State-of-the-Art (SoA), we also take into account the Access Network (AN), while formulating the problem as a general Mixed Integer Linear Program (MILP). Due to the high complexity of the proposed optimal solution, we also propose a low-complexity energy-efficient resource allocation algorithm, which was shown to significantly outperform the SoA, by achieving up to 78% of the optimal energy efficiency with up to 742 times lower complexity. Finally, we describe an Orchestration Framework for the automated orchestration of vertical-driven services in Network Slices and describe how it encompasses the proposed algorithm towards optimized provisioning of heterogeneous computation and network resources across multiple network segments.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 8084-8094 ◽  
Author(s):  
Luhan Wang ◽  
Zhaoming Lu ◽  
Xiangming Wen ◽  
Raymond Knopp ◽  
Rohit Gupta

Sign in / Sign up

Export Citation Format

Share Document