scholarly journals Triple-Frequency Combining Observation Models and Performance in Precise Point Positioning Using Real BDS Data

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 69826-69836
Author(s):  
Honglei Qin ◽  
Peng Liu ◽  
Li Cong ◽  
Wanqing Ji
GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Luca Carlin ◽  
André Hauschild ◽  
Oliver Montenbruck

AbstractFor more than 20 years, precise point positioning (PPP) has been a well-established technique for carrier phase-based navigation. Traditionally, it relies on precise orbit and clock products to achieve accuracies in the order of centimeters. With the modernization of legacy GNSS constellations and the introduction of new systems such as Galileo, a continued reduction in the signal-in-space range error (SISRE) can be observed. Supported by this fact, we analyze the feasibility and performance of PPP with broadcast ephemerides and observations of Galileo and GPS. Two different functional models for compensation of SISREs are assessed: process noise in the ambiguity states and the explicit estimation of a SISRE state for each channel. Tests performed with permanent reference stations show that the position can be estimated in kinematic conditions with an average three-dimensional (3D) root mean square (RMS) error of 29 cm for Galileo and 63 cm for GPS. Dual-constellation solutions can further improve the accuracy to 25 cm. Compared to standard algorithms without SISRE compensation, the proposed PPP approaches offer a 40% performance improvement for Galileo and 70% for GPS when working with broadcast ephemerides. An additional test with observations taken on a boat ride yielded 3D RMS accuracy of 39 cm for Galileo, 41 cm for GPS, and 27 cm for dual-constellation processing compared to a real-time kinematic reference solution. Compared to the use of process noise in the phase ambiguity estimation, the explicit estimation of SISRE states yields a slightly improved robustness and accuracy at the expense of increased algorithmic complexity. Overall, the test results demonstrate that the application of broadcast ephemerides in a PPP model is feasible with modern GNSS constellations and able to reach accuracies in the order of few decimeters when using proper SISRE compensation techniques.


GPS Solutions ◽  
2020 ◽  
Vol 24 (3) ◽  
Author(s):  
Pan Li ◽  
Xinyuan Jiang ◽  
Xiaohong Zhang ◽  
Maorong Ge ◽  
Harald Schuh

2020 ◽  
Vol 55 ◽  
pp. 184-198 ◽  
Author(s):  
Zhouzheng Gao ◽  
Maorong Ge ◽  
You Li ◽  
Yuanjin Pan ◽  
Qijin Chen ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3164
Author(s):  
Lizhong Qu ◽  
Pu Zhang ◽  
Changfeng Jing ◽  
Mingyi Du ◽  
Jian Wang ◽  
...  

We investigate the estimation of the fractional cycle biases (FCBs) for GPS triple-frequency uncombined precise point positioning (PPP) with ambiguity resolution (AR) based on the IGS ultra-rapid predicted (IGU) orbits. The impact of the IGU orbit errors on the performance of GPS triple-frequency PPP AR is also assessed. The extra-wide-lane (EWL), wide-lane (WL) and narrow-lane (NL) FCBs are generated with the single difference (SD) between satellites model using the global reference stations based on the IGU orbits. For comparison purposes, the EWL, WL and NL FCBs based on the IGS final precise (IGF) orbits are estimated. Each of the EWL, WL and NL FCBs based on IGF and IGU orbits are converted to the uncombined FCBs to implement the static and kinematic triple-frequency PPP AR. Due to the short wavelengths of NL ambiguities, the IGU orbit errors significantly impact the precision and stability of NL FCBs. An average STD of 0.033 cycles is achieved for the NL FCBs based on IGF orbits, while the value of the NL FCBs based on IGU orbits is 0.133 cycles. In contrast, the EWL and WL FCBs generated based on IGU orbits have comparable precision and stability to those generated based on IGF orbits. The use of IGU orbits results in an increased time-to-first-fix (TTFF) and lower fixing rates compared to the use of IGF orbits. Average TTFFs of 23.3 min (static) and 31.1 min (kinematic) and fixing rates of 98.1% (static) and 97.4% (kinematic) are achieved for the triple-frequency PPP AR based on IGF orbits. The average TTFFs increase to 27.0 min (static) and 37.9 min (kinematic) with fixing rates of 97.0% (static) and 96.3% (kinematic) based on the IGU orbits. The convergence times and positioning accuracy of PPP and PPP AR based on IGU orbits are slightly worse than those based on IGF orbits. Additionally, limited by the number of satellites transmitting three frequency signals, the introduction of the third frequency, L5, has a marginal impact on the performance of PPP and PPP AR. The GPS triple-frequency PPP AR performance is expected to improve with the deployment of new-generation satellites capable of transmitting the L5 signal.


2020 ◽  
pp. 1-19
Author(s):  
Francesco Basile ◽  
Terry Moore ◽  
Chris Hill ◽  
Gary McGraw

In recent years, global navigation satellite system (GNSS) precise point positioning (PPP) has become a standard positioning technique for many applications with typically favourable open sky conditions, e.g. precision agriculture. Unfortunately, the long convergence (and reconvergence) time of PPP often significantly limits its use in difficult and restricted signal environments typically associated with urban areas. The modernisation of GNSS will positively affect and improve the convergence time of the PPP solutions, thanks to the higher number of satellites in view that broadcast multifrequency measurements. The number and geometry of the available satellites is a key factor that impacts on the convergence time in PPP, while triple-frequency observables have been shown to greatly benefit the fixing of the carrier phase integer ambiguities. On the other hand, many studies have shown that triple-frequency combinations do not usefully contribute to a reduction of the convergence time of float PPP solutions. This paper proposes novel GPS and Galileo triple-carrier ionosphere-free combinations that aim to enhance the observability of the narrow-lane ambiguities. Tests based on simulated data have shown that these combinations can reduce the convergence time of the float PPP solution by a factor of up to 2·38 with respect to the two-frequency combinations. This approach becomes effective only after the extra wide-lane and wide-lane ambiguities have been fixed. For this reason, a new fixing method based on low-noise pseudo-range combinations corrected by the smoothed ionosphere correction is presented. By exploiting this algorithm, no more than a few minutes are required to fix the WL ambiguities for Galileo, even in cases of severe multipath environments.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2469 ◽  
Author(s):  
Peng Liu ◽  
Honglei Qin ◽  
Li Cong

Multi- system and multi-frequency are two key factors that determine the performance of precise point positioning. Both multi-frequency and multi-system lead to new biases, which are not solved systematically. This paper concentrates on mathematical models of biases, influences of these biases, and positioning performance analysis of different observation models. The biases comprise the inter-frequency clock bias in multi-frequency and the inter-system clock bias in multi-system. The former is the residual differential code biases (DCBs) from receiver clock and satellite clock and usually occurs at the third frequency, the latter is the deviation of the receiver clock errors in different systems. Unified mathematical models of the biases are presented by analyzing the general formula of observation equations. The influences of these biases are validated by experiments with corresponding observation models. Subsequently, the experiments, which are based on the data at five globally distributed stations in Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) on day of year 100, 2018, assess positioning performance of different observation models with combination of frequencies (dual-frequency or triple- frequency) and systems (BeiDou Navigation Satellite System (BDS) or Global Positioning System (GPS)). The results show that the performances of triple-frequency models are almost as the same level as the dual-frequency models. They provide scientific support for the triple-frequency ambiguity-fixed solution which has a better convergence characteristic than dual-frequency ambiguity-fixed solution. Furthermore, the biases are expressed as an unified form that gives an important and valuable reference for future research on multi-frequency and multi-system precise point positioning.


2020 ◽  
Vol 73 (4) ◽  
pp. 763-775 ◽  
Author(s):  
Wenjie Zhang ◽  
Hongzhen Yang ◽  
Chen He ◽  
Zhiqiang Wang ◽  
Weiping Shao ◽  
...  

This paper presents an investigation of the precise point positioning (PPP) performance of a combined solution from BDS-2 and BDS-3 satellites. To simultaneously process different BDS signal observations, i.e., B1/B1C, B2/B2a and B3C, undifferenced and uncombined observations with ionosphere delay constrained by the deterministic plus stochastic ionosphere model are used in the basic model. Special attention is paid to code bias and receiver clock parameters in the derivation of the observation model. The analysis is carried out using more than one-month data for BDS-2 and BDS-3 collected at the CANB, DWIN, KNDY and PETH stations in the Asia-Pacific region. The results suggest that compared with BDS-2 alone, the BDS-2 and BDS-3 solution provides significantly more accurate PPP, with increases of 28%, 21% and 5% in the up, north and east directions, respectively. In addition, the average root mean square error decreases to 0·21, 0·13 and 0·16 m for the three directions. Furthermore, the PPP convergence time for BDS-2 and BDS-3 is about 1·5 h and less than 1 h for the horizontal and vertical components, respectively, whereas that for BDS-2 alone is about 2·3 h for both directions.


Sign in / Sign up

Export Citation Format

Share Document