scholarly journals MEMS Accelerometer Calibration Denoising Method for Hopkinson Bar System Based on LMD-SE-TFPF

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 113901-113915 ◽  
Author(s):  
Zeyu Yan ◽  
Boyang Hou ◽  
Jingchun Zhang ◽  
Chong Shen ◽  
Yunbo Shi ◽  
...  
Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 134 ◽  
Author(s):  
Qing Lu ◽  
Lixin Pang ◽  
Haoqian Huang ◽  
Chong Shen ◽  
Huiliang Cao ◽  
...  

High-G MEMS accelerometers have been widely used in monitoring natural disasters and other fields. In order to improve the performance of High-G MEMS accelerometers, a denoising method based on the combination of empirical mode decomposition (EMD) and wavelet threshold is proposed. Firstly, EMD decomposition is performed on the output of the main accelerometer to obtain the intrinsic mode function (IMF). Then, the continuous mean square error rule is used to find energy cut-off point, and then the corresponding high frequency IMF component is denoised by wavelet threshold. Finally, the processed high-frequency IMF component is superposed with the low-frequency IMF component, and the reconstructed signal is denoised signal. Experimental results show that this method integrates the advantages of EMD and wavelet threshold and can retain useful signals to the maximum extent. The impact peak and vibration characteristics are 0.003% and 0.135% of the original signal, respectively, and it reduces the noise of the original signal by 96%.


2021 ◽  
Vol 2021 ◽  
pp. 1-16 ◽  
Author(s):  
Huiliang Cao ◽  
Zekai Zhang ◽  
Yu Zheng ◽  
Hao Guo ◽  
Rui Zhao ◽  
...  

Recently, the High-G MEMS accelerometer (HGMA) has been used in navigation, mechanical property detection, consumer electronics, and other fields widely. As the core component of a measuring system, it is very crucial to enhance the calibration accuracy of the accelerometer. In order to remove the noises in the accelerometer output signals to enhance its calibration accuracy, a combined denoising method which combines variational mode decomposition (VMD) with permutation entropy (PE) and wavelet threshold is given in this article. For the sake of overcoming the defect of signal distortion caused by the traditional denoising methods, this joint denoising method combines the good decomposition characteristics of VMD and the good denoising ability of wavelet threshold and introduces PE as a judgment criterion to achieve a good balance between denoising effect and signal fidelity. The combination of PE and VMD not only avoids the phenomenon of mode aliasing but also improves the ability to identify the noise components, which makes the wavelet threshold denoising more specific. Firstly, some intrinsic mode functions (IMFs) are obtained by using VMD to decompose the complex signal containing noise which is outputted from the accelerometer. Secondly, the IMF components can be divided into noise IMF components, mixed IMF components, and useful IMF components by PE algorithm. Thirdly, the noise IMF components can be discarded directly, and then the mixed IMF components can be denoised by wavelet threshold to obtain the noiseless IMF components; in addition, the useful IMF components need to be retained. Finally, the final denoising signal can be obtained by reconstructing the IMF components which have been denoised by the wavelet threshold and the useful IMF components retained before denoising. The experimental results prove that the combined denoising algorithm combines the merits of VMD, PE, and wavelet threshold, and this new algorithm has a good performance in the calibration denoising of accelerometer. Compared with the serious signal distortion caused by using only EMD or wavelet threshold, this method not only has a good denoising effect (the noises in the static part are eliminated by 99.97% and the SNR of the dynamic part is raised to 18.56) but also can maintain a good signal fidelity (the error of shock peak amplitude is 3.4%, the error of vibration peak amplitude is 0.4%, and the correlation coefficient between the denoising signals and dynamic part is as high as 0.982).


2018 ◽  
Vol 6 (12) ◽  
pp. 448-452
Author(s):  
Md Shaiful Islam Babu ◽  
Kh Shaikh Ahmed ◽  
Md Samrat Ali Abu Kawser ◽  
Ajkia Zaman Juthi

2009 ◽  
Vol 29 (1) ◽  
pp. 68-70
Author(s):  
Chun-rui TANG ◽  
Dan-dan LIU

2013 ◽  
Vol 32 (11) ◽  
pp. 3218-3220
Author(s):  
Jin YANG ◽  
Zhi-qin LIU ◽  
Yao-bin WANG ◽  
Xiao-ming GAO

Sign in / Sign up

Export Citation Format

Share Document