scholarly journals Data Fusion of UWB and IMU Based on Unscented Kalman Filter for Indoor Localization of Quadrotor UAV

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 64971-64981 ◽  
Author(s):  
Weide You ◽  
Fanbiao Li ◽  
Liqing Liao ◽  
Meili Huang
2021 ◽  
Author(s):  
Kanishke Gamagedara ◽  
Taeyoung Lee ◽  
Murray R. Snyder

Sensors ◽  
2015 ◽  
Vol 15 (9) ◽  
pp. 24595-24614 ◽  
Author(s):  
Guoliang Chen ◽  
Xiaolin Meng ◽  
Yunjia Wang ◽  
Yanzhe Zhang ◽  
Peng Tian ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 6972
Author(s):  
Harun Jamil ◽  
Faiza Qayyum ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

This paper presents an enhanced PDR-BLE compensation mechanism for improving indoor localization, which is considerably resilient against variant uncertainties. The proposed method of ePDR-BLE compensation mechanism (EPBCM) takes advantage of the non-requirement of linearization of the system around its current state in an unscented Kalman filter (UKF) and Kalman filter (KF) in smoothing of received signal strength indicator (RSSI) values. In this paper, a fusion of conflicting information and the activity detection approach of an object in an indoor environment contemplates varying magnitude of accelerometer values based on the hidden Markov model (HMM). On the estimated orientation, the proposed approach remunerates the inadvertent body acceleration and magnetic distortion sensor data. Moreover, EPBCM can precisely calculate the velocity and position by reducing the position drift, which gives rise to a fault in zero-velocity and heading error. The developed EPBCM localization algorithm using Bluetooth low energy beacons (BLE) was applied and analyzed in an indoor environment. The experiments conducted in an indoor scenario shows the results of various activities performed by the object and achieves better orientation estimation, zero velocity measurements, and high position accuracy than other methods in the literature.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222506-222519
Author(s):  
Jan Dorazil ◽  
Rene Repp ◽  
Thomas Kropfreiter ◽  
Richard Pruller ◽  
Kamil Riha ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 488 ◽  
Author(s):  
Bingbing Gao ◽  
Gaoge Hu ◽  
Shesheng Gao ◽  
Yongmin Zhong ◽  
Chengfan Gu

2011 ◽  
Vol 115 (1164) ◽  
pp. 113-122 ◽  
Author(s):  
M. Majeed ◽  
I. N. Kar

AbstractAccurate and reliable airdata systems are critical for aircraft flight control system. In this paper, both extended Kalman filter (EKF) and unscented Kalman filter (UKF) based various multi sensor data fusion methods are applied to dynamic manoeuvres with rapid variations in the aircraft motion to calibrate the angle-of-attack (AOA) and angle-of-sideslip (AOSS) and are compared. The main goal of the investigations reported is to obtain online accurate flow angles from the measured vane deflection and differential pressures from probes sensitive to flow angles even in the adverse effect of wind or turbulence. The proposed algorithms are applied to both simulated as well as flight test data. Investigations are initially made using simulated flight data that include external winds and turbulence effects. When performance of the sensor fusion methods based on both EKF and UKF are compared, UKF is found to be better. The same procedures are then applied to flight test data of a high performance fighter aircraft. The results are verified with results obtained using proven an offline method, namely, output error method (OEM) for flight-path reconstruction (FPR) using ESTIMA software package. The consistently good results obtained using sensor data fusion approaches proposed in this paper establish that these approaches are of great value for online implementations.


Sign in / Sign up

Export Citation Format

Share Document