scholarly journals Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 488 ◽  
Author(s):  
Bingbing Gao ◽  
Gaoge Hu ◽  
Shesheng Gao ◽  
Yongmin Zhong ◽  
Chengfan Gu
2021 ◽  
Author(s):  
Kanishke Gamagedara ◽  
Taeyoung Lee ◽  
Murray R. Snyder

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 64971-64981 ◽  
Author(s):  
Weide You ◽  
Fanbiao Li ◽  
Liqing Liao ◽  
Meili Huang

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222506-222519
Author(s):  
Jan Dorazil ◽  
Rene Repp ◽  
Thomas Kropfreiter ◽  
Richard Pruller ◽  
Kamil Riha ◽  
...  

2011 ◽  
Vol 115 (1164) ◽  
pp. 113-122 ◽  
Author(s):  
M. Majeed ◽  
I. N. Kar

AbstractAccurate and reliable airdata systems are critical for aircraft flight control system. In this paper, both extended Kalman filter (EKF) and unscented Kalman filter (UKF) based various multi sensor data fusion methods are applied to dynamic manoeuvres with rapid variations in the aircraft motion to calibrate the angle-of-attack (AOA) and angle-of-sideslip (AOSS) and are compared. The main goal of the investigations reported is to obtain online accurate flow angles from the measured vane deflection and differential pressures from probes sensitive to flow angles even in the adverse effect of wind or turbulence. The proposed algorithms are applied to both simulated as well as flight test data. Investigations are initially made using simulated flight data that include external winds and turbulence effects. When performance of the sensor fusion methods based on both EKF and UKF are compared, UKF is found to be better. The same procedures are then applied to flight test data of a high performance fighter aircraft. The results are verified with results obtained using proven an offline method, namely, output error method (OEM) for flight-path reconstruction (FPR) using ESTIMA software package. The consistently good results obtained using sensor data fusion approaches proposed in this paper establish that these approaches are of great value for online implementations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huadong Wang ◽  
Shi Dong

In order to improve the reliability of measurement data, the multisensor data fusion technology has progressed greatly in improving the accuracy of measurement data. This paper utilizes the real-time, recursive, and optimal estimation characteristics of unscented Kalman filter (UKF), as well as the unique advantages of multiscale wavelet transform decomposition in data analysis to effectively integrate observational data from multiple sensors. A new multiscale UKF-based multisensor data fusion algorithm is proposed by combining the UKF with multiscale signal analysis. Firstly, model-based UKF is introduced into the multiple sensors, and then the model is decomposed at multiple scales onto the coarse scale with wavelets. Next, signals decomposed from fine to coarse scales are adjusted using the denoised observational data from corresponding sensors and reconstructed with wavelets to obtain the fused signals. Finally, the processed data are fused using adaptive weighted fusion algorithm. Comparison of simulation and experimental results shows that the proposed method can effectively improve the antijamming capability of the measurement system and ensure the reliability and accuracy of sensor measurement system compared to the use of data fusion algorithm alone.


Sign in / Sign up

Export Citation Format

Share Document