scholarly journals Indirect Adaptive State-Feedback Control of Rotary Inverted Pendulum Using Self-Mutating Hyperbolic-Functions for Online Cost Variation

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 91236-91247 ◽  
Author(s):  
Omer Saleem ◽  
Khalid Mahmood-Ul-Hasan
Author(s):  
Naserodin Sepehry ◽  
Mahnaz Shamshirsaz

The inverted pendulum, a classical mechatronic application, exists in many different forms. In despite that many works have been done to balance the pendulum link on end of this device using feedback control but few studies have been developed to control this rotary inverted pendulum using PD controller. In classical methods, using PD, PI or PID control, difficulties appear due to one of the coefficients becomes zero in closed loop transfer function denominator and consequently the system becomes unstable. In this study, an arbitrary pole is placed in order to create a break point in root locus, so by this way a PD controller can be designed for this new system. Also, disturbance rejection has been investigated by state space method in this paper. The results of this modified PD controller are compared with full state feedback control and optimal control, so the method used in this study has been validated.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Reta Degefa

In this paper a full state feedback control of a double inverted pendulum on a cart (DIPC) are designed and compared. Modeling is based on Euler-Lagrange equations derived by specifying a Lagrangian, difference between kinetic and potential energy of the DIPC system. A full state feedback control with H infinity and H 2 is addressed. Two approaches are tested: open loop impulse response and a double inverted pendulum on a cart with full state feedback H infinity and H 2 controllers. Simulations reveal superior performance of the double inverted pendulum on a cart with full state feedback H infinity controller.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Reta Degefa

In this paper a full state feedback control of a double inverted pendulum on a cart (DIPC) are designed and compared. Modeling is based on Euler-Lagrange equations derived by specifying a Lagrangian, difference between kinetic and potential energy of the DIPC system. A full state feedback control with H infinity and H 2 is addressed. Two approaches are tested: open loop impulse response and a double inverted pendulum on a cart with full state feedback H infinity and H 2 controllers. Simulations reveal superior performance of the double inverted pendulum on a cart with full state feedback H infinity controller.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 203
Author(s):  
Indrazno Siradjuddin ◽  
Zakiyah Amalia ◽  
Erfan Rohadi ◽  
Budhy Setiawan ◽  
Awan Setiawan ◽  
...  

A Cart Inverted Pendulum System is an unstable, nonlinear and underactuated system. This makes a cart inverted pendulum system used as a benchmark for testing many control method. A cart must occupy the desired position and the angle of the pendulum must be in an equilibrium point. System modeling of a cart inverted pendulum is important for controlling this system, but modeling using assumptions from state-feedback control is not completely valid. To minimize unmeasured state variables, state estimators need to be designed. In this paper, the state estimator is designed to complete the state-feedback control to control the cart inverted pendulum system. The mathematical model of the cart inverted pendulum system is obtained by using the Lagrange equation which is then changed in the state space form. Mathematical models of motors and mechanical transmissions are also included in the cart inverted pendulum system modeling so that it can reduce errors in a real-time application. The state gain control parameter is obtained by selecting the weighting matrix in the Linear Quadratic Regulator (LQR) method, then added with the Leuenberger observer gain that obtained by the pole placement method on the state estimator. Simulation is done to determine the system performance. The simulation results show that the proposed method can stabilize the cart inverted pendulum system on the cart position and the desired pendulum angle. 


2014 ◽  
Vol 16 ◽  
pp. 05009 ◽  
Author(s):  
Mikhail E. Semenov ◽  
Dmitry V. Grachikov ◽  
Anton G. Rukavitsyn ◽  
Peter A. Meleshenko

Sign in / Sign up

Export Citation Format

Share Document