scholarly journals Towards Accurate and Efficient Classification of Power System Contingencies and Cyber-Attacks Using Recurrent Neural Networks

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 123297-123309
Author(s):  
Wei-Chih Hong ◽  
Ding-Ray Huang ◽  
Chih-Lung Chen ◽  
Jung-San Lee
2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Dmitry Amelin ◽  
Ivan Potapov ◽  
Josep Cardona Audí ◽  
Andreas Kogut ◽  
Rüdiger Rupp ◽  
...  

AbstractThis paper reports on the evaluation of recurrent and convolutional neural networks as real-time grasp phase classifiers for future control of neuroprostheses for people with high spinal cord injury. A field-programmable gate array has been chosen as an implementation platform due to its form factor and ability to perform parallel computations, which are specific for the selected neural networks. Three different phases of two grasp patterns and the additional open hand pattern were predicted by means of surface Electromyography (EMG) signals (i.e. Seven classes in total). Across seven healthy subjects, CNN (Convolutional Neural Networks) and RNN (Recurrent Neural Networks) had a mean accuracy of 85.23% with a standard deviation of 4.77% and 112 µs per prediction and 83.30% with a standard deviation of 4.36% and 40 µs per prediction, respectively.


Author(s):  
Ravi Kauthale

Abstract: The aim here is to explore the methods to automate the labelling of the information that is present in bug trackers and client support systems. This is majorly based on the classification of the content depending on some criteria e.g., priority or product area. Labelling of the tickets is important as it helps in effective and efficient handling of the ticket and help is quicker and comprehensive resolution of the tickets. The main goal of the project is to analyze the existing methodologies used for automated labelling and then use a newer approach and compare the results. The existing methodologies are the ones which are based of the neural networks and without neural networks. In this project, a newer approach based on the recurrent neural networks which are based on the hierarchical attention paradigm will be used. Keywords: Automate Labeling, Recurrent Neural Networks, Hierarchical Attention, Multi-class Text Classification, GRU


SINERGI ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 29
Author(s):  
Widi Aribowo

Load shedding plays a key part in the avoidance of the power system outage. The frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the outage as well as the severe breakdown of the system utility.  In recent years, Neural networks have been very victorious in several signal processing and control applications.  Recurrent Neural networks are capable of handling complex and non-linear problems. This paper provides an algorithm for load shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN, where the feedforward connections are modifiable and the recurrent connections are fixed. The research is implemented in MATLAB and the performance is tested with a 6 bus system. The results are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases needed and more efficient than other methods. 


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Gagliano ◽  
Elie Bou Assi ◽  
Dang K. Nguyen ◽  
Mohamad Sawan

Abstract This work proposes a novel approach for the classification of interictal and preictal brain states based on bispectrum analysis and recurrent Long Short-Term Memory (LSTM) neural networks. Two features were first extracted from bilateral intracranial electroencephalography (iEEG) recordings of dogs with naturally occurring focal epilepsy. Single-layer LSTM networks were trained to classify 5-min long feature vectors as preictal or interictal. Classification performances were compared to previous work involving multilayer perceptron networks and higher-order spectral (HOS) features on the same dataset. The proposed LSTM network proved superior to the multilayer perceptron network and achieved an average classification accuracy of 86.29% on held-out data. Results imply the possibility of forecasting epileptic seizures using recurrent neural networks, with minimal feature extraction.


Sign in / Sign up

Export Citation Format

Share Document