scholarly journals Optimal Operation of Integrated Energy System Based on Exergy Analysis and Adaptive Genetic Algorithm

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 158752-158764
Author(s):  
Haoyong Chen ◽  
Simin Chen ◽  
Ming Li ◽  
Jinbin Chen
2021 ◽  
Vol 2087 (1) ◽  
pp. 012017
Author(s):  
Yan Liang ◽  
Yao Wang ◽  
Hongli Liu ◽  
Peng Wang ◽  
Yongming Jing ◽  
...  

Abstract Due to the high cost of energy storage part in traditional integrated energy systems, the demand response effect is poor. The paper proposes electrolytic water hydrogen production technology and applies it to the optimal operation of integrated energy system. By optimizing the operating cost of the system through adaptive genetic algorithm, we show that when the load matching degree was increased from 50% to 70%, the system operating cost was reduced by about 15.8%, and the carbon displacement was decreased by about 35%. System operating costs, carbon emissions, and the amount of electrolytic water systems involved in the demand response have all decreased.


2021 ◽  
Vol 289 ◽  
pp. 116698
Author(s):  
Peng Li ◽  
Zixuan Wang ◽  
Jiahao Wang ◽  
Tianyu Guo ◽  
Yunxing Yin

2020 ◽  
Vol 165 ◽  
pp. 01013
Author(s):  
Linfeng Wang ◽  
Kai Zhang ◽  
Nan Xu ◽  
Jingyan Wang ◽  
Danyang Zhang ◽  
...  

With the depletion of fossil energy and the popularity of renewable energy, a comprehensive energy system with the goal of improving system energy efficiency and consuming renewable energy is booming. Based on the combined heat, power, and heat generation, this paper builds a comprehensive energy system operation optimization model in conjunction with ground source heat pumps. It aims to find the optimal operation strategy based on the actual situation of the park’s load, equipment capacity, and energy prices. Using the linear programming method, a mathematical model with the best economic efficiency of the integrated energy system is established, the optimal operation strategy for a typical day is analyzed, and the annual operation is simulated. Finally, it compares with conventional energy supply methods and analyzes the contribution to the consumption of renewable energy.


2020 ◽  
Vol 1639 ◽  
pp. 012061
Author(s):  
Shouqiang Li ◽  
Wenxia Liu ◽  
Jing Wang ◽  
Zongqi Liu

2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Fan Zhang ◽  
Xiyuan Ma ◽  
Senjing Yao ◽  
Zhuolin Zhong ◽  
...  

The park integrated energy system (PIES) plays an important role in realizing sustainable energy development and carbon neutral. Furthermore, its optimization dispatch can improve the energy utilization efficiency and reduce energy systems operation cost. However, the randomness and volatility of renewable energy and the instability of load all bring challenges to its optimal operation. An optimal dispatch framework of PIES is proposed, which constructs the operation models under three different time scales, including day-ahead, intra-day and real-time. Demand response is also divided into three levels considering its response characteristics and cost composition under different time scales. The example analysis shows that the multi-time scale optimization dispatch model can not only meet the supply and demand balance of PIES, diminish the fluctuation of renewable energy and flatten load curves, but also reduce the operation cost and improve the reliability of energy systems.


Author(s):  
Melchiorre Casisi ◽  
Stefano Costanzo ◽  
Piero Pinamonti ◽  
Mauro Reini

The paper deals with the modelization and optimization of an integrated multi-component energy system. On-off operation and presence-absence of components must be described by means of binary decision variables, besides equality and inequality constraints; furthermore, the synthesis and the operation of the energy system should be optimized at the same time. In this paper a hierarchical optimization strategy is used, adopting a genetic algorithm in the higher optimization level, to choose the main binary decision variables, whilst a MILP algorithm is used in the lower level, to choose the optimal operation of the system and to supply the merit function to the genetic algorithm. The method is then applied to a distributed generation system, which has to be designed for a set of users located in the center of a small town in the North-East of Italy. The results show the advantage of distributed cogeneration, when the optimal synthesis and operation of the whole system are adopted, and significant reduction in the computing time by using the proposed two-level optimization procedure.


2021 ◽  
Vol 6 (11) ◽  
pp. 150
Author(s):  
Kai Hoth ◽  
Tom Steffen ◽  
Béla Wiegel ◽  
Amine Youssfi ◽  
Davood Babazadeh ◽  
...  

The intermittent energy supply from distributed resources and the coupling of different energy and application sectors play an important role for future energy systems. Novel operational concepts require the use of widespread and reliable Information and Communication Technology (ICT). This paper presents the approach of a research project that focuses on the development of an innovative operational concept for a Smart Integrated Energy System (SIES), which consists of a physical architecture, ICT and energy management strategies. The cellular approach provides the architecture of the physical system in combination with Transactive Control (TC) as the system’s energy management framework. Independent dynamic models for each component, the physical and digital system, operational management and market are suggested and combined in a newly introduced co-simulation platform to create a holistic model of the integrated energy system. To verify the effectiveness of the operational concept, energy system scenarios are derived and evaluation criteria are suggested which can be employed to evaluate the future system operations.


Sign in / Sign up

Export Citation Format

Share Document