scholarly journals Adaptive Fuzzy Dynamic Surface Control for Multi-Machine Power System Based on Composite Learning Method and Disturbance Observer

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 163163-163175 ◽  
Author(s):  
Guoqiang Zhu ◽  
Linlin Nie ◽  
Miaolei Zhou ◽  
Xiuyu Zhang ◽  
Lingfang Sun ◽  
...  
Author(s):  
Maryam Shahriari-Kahkeshi

This chapter proposes a new modeling and control scheme for uncertain strict-feedback nonlinear systems based on adaptive fuzzy wavelet network (FWN) and dynamic surface control (DSC) approach. It designs adaptive FWN as a nonlinear-in-parameter approximator to approximate the uncertain dynamics of the system. Then, the proposed control scheme is developed by incorporating the DSC method to the adaptive FWN-based model. Stability analysis of the proposed scheme is provided and adaptive laws are designed to learn all linear and nonlinear parameters of the network. It is proven that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can be made arbitrary small. The proposed scheme does not require any prior knowledge about dynamics of the system and offline learning. Furthermore, it eliminates the “explosion of complexity” problems and develops accurate model of the system and simple controller. Simulation results on the numerical example and permanent magnet synchronous motor are provided to show the effectiveness of the proposed scheme.


Author(s):  
Yunfei Wang ◽  
Jiyun Zhao ◽  
Haigang Ding ◽  
He Zhang

The electro-hydraulic system is widely used in industrial production due to its high power-to-weight ratio, but the heavy-duty characteristics make the electro-hydraulic system subject to large disturbance force even if the actuator moves slightly, especially in mobile machines and multi-actuators system. Therefore, a position and velocity constraints method based on barrier Lyapunov function is proposed to guarantee the tracking error limited in a strict range to avoid the large disturbance force. Besides, the external disturbance, parameters uncertainty and modeling errors in the asymmetric cylinder electro-hydraulic systems affect the accuracy of position tracking seriously. So a high-gain disturbance observer is designed to estimate the lumped disturbance of the system, which can avoid amplification of the noise during the states measurement. In addition, dynamic surface control based on backstepping method is adopted to avoid the derivative explosion phenomenon when calculating the derivatives of virtual control inputs, which reduces the computational complexity of the system significantly. To verify the effectiveness of the proposed controller, proportional-integral controller and adaptive controller are designed to be compared with the high-gain disturbance observer–based dynamic surface controller with the backstepping method, and the comparison results show that the proposed controller has a more precise trajectory tracking performance.


Sign in / Sign up

Export Citation Format

Share Document