scholarly journals Analysis of Electricity Pricing in Emerging Economies With Hybrid Multi-Criteria Decision-Making Technique Based on Interval-Valued Intuitionistic Hesitant Fuzzy Sets

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 190882-190896
Author(s):  
Chuanbin Wang ◽  
Hongxia Zhou ◽  
Hasan Dincer ◽  
Serhat Yuksel ◽  
Gozde Gulseven Ubay ◽  
...  
2016 ◽  
Vol 15 (05) ◽  
pp. 1055-1114 ◽  
Author(s):  
Sheng-Hua Xiong ◽  
Zhen-Song Chen ◽  
Yan-Lai Li ◽  
Kwai-Sang Chin

Developing aggregation operators for interval-valued hesitant fuzzy sets (IVHFSs) is a technological task we are faced with, because they are specifically important in many problems related to the fusion of interval-valued hesitant fuzzy information. This paper develops several novel kinds of power geometric operators, which are referred to as variable power geometric operators, and extends them to interval-valued hesitant fuzzy environments. A series of generalized interval-valued hesitant fuzzy power geometric (GIVHFG) operators are also proposed to aggregate the IVHFSs to model mandatory requirements. One of the important characteristics of these operators is that objective weights of input arguments are variable with the change of a non-negative parameter. By adjusting the exact value of the parameter, the influence caused by some “false” or “biased” arguments can be reduced. We demonstrate some desirable and useful properties of the proposed aggregation operators and utilize them to develop techniques for multiple criteria group decision making with IVHFSs considering the heterogeneous opinions among individual decision makers. Furthermore, we propose an entropy weights-based fitting approach for objectively obtaining the appropriate value of the parameter. Numerical examples are provided to illustrate the effectiveness of the proposed techniques.


Author(s):  
Juan-Juan Peng ◽  
Jian-Qiang Wang ◽  
Xiao-Hui Wu

Hesitant fuzzy sets (HFSs), an extension of fuzzy sets, are considered to be useful in solving decision making problems where decision makers are unable to choose between several values when expressing their preferences. The purpose of this paper is to develop two hesitant fuzzy multi-criteria decision making (MCDM) methods based on prospect theory (PT). First, the novel component-wise ordering method for two hesitant fuzzy numbers (HFNs) is defined; however, this method does not consider the length of the two HFNs. Second, by utilizing the directed Hausdorff distance between two imprecise point sets, the generalized hesitant Hausdorff distance is developed, which overcomes the shortcomings of the existing distance measures. Third, based on the proposed comparison method and distance, as well as PT, the extended TODIM and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) approaches are developed in order to solve MCDM problems with hesitant fuzzy information. Finally, a practical example is provided to illustrate the pragmatism and effectiveness of the proposed approaches. Sensitivity and comparison analyses are also conducted using the same example. The findings indicate that the proposed methods do not require complicated computation procedures, yet still yield a reasonable and credible solution.


2013 ◽  
Vol 19 (1) ◽  
pp. 22-37 ◽  
Author(s):  
Seyed Hossein Razavi Hajiagha ◽  
Shide Sadat Hashemi ◽  
Edmundas Kazimieras Zavadskas

Multi-criteria decision making is an implicational field that concerns with selecting or designing the best scenarios among a finite set of scenarios based on a finite set of criteria. Different methods and techniques for handling this issue have been proposed. Complex proportional assessment is an analytical tool for solving multi-criteria decision making problems. Originally, the COPRAS method has been developed for decision making under a deterministic environment. Since uncertainty is an unavoidable property of decision making due to a lack of knowledge, this paper suggests an extended form of the COPRAS method used for group decision making problems in an uncertain environment where such uncertainty is captured through a generalized form of fuzzy sets - the so called interval valued intuitionistic fuzzy sets. An algorithmic scheme for the COPRAS-IVIF method has been introduced thus examining its application with reference to two numerical examples. It seems that the recommended framework of COPRAS-IVIF can be satisfactorily implemented in decision making problems under ambiguous and ill-defined conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
M. Sarwar Sindhu ◽  
Tabasam Rashid ◽  
Agha Kashif ◽  
Juan Luis García Guirao

Probabilistic interval-valued hesitant fuzzy sets (PIVHFSs) are an extension of interval-valued hesitant fuzzy sets (IVHFSs) in which each hesitant interval value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. PIVHFSs describe the belonging degrees in the form of interval along with probabilities and thereby provide more information and can help the decision makers (DMs) to obtain precise, rational, and consistent decision consequences than IVHFSs, as the correspondence of unpredictability and inaccuracy broadly presents in real life problems due to which experts are confused to assign the weights to the criteria. In order to cope with this problem, we construct the linear programming (LP) methodology to find the exact values of the weights for the criteria. Furthermore these weights are employed in the aggregation operators of PIVHFSs recently developed. Finally, the LP methodology and the actions are then applied on a certain multiple criteria decision making (MCDM) problem and a comparative analysis is given at the end.


Sign in / Sign up

Export Citation Format

Share Document