Modified distance measure on hesitant fuzzy sets and its application in multi-criteria decision making problem

OPSEARCH ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 584-602
Author(s):  
Biplab Singha ◽  
Mausumi Sen ◽  
Nidul Sinha
2017 ◽  
Vol 7 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Ismat Beg ◽  
Tabasam Rashid

Abstract A notion for distance between hesitant fuzzy data is given. Using this new distance notion, we propose the technique for order preference by similarity to ideal solution for hesitant fuzzy sets and a new approach in modelling uncertainties. An illustrative example is constructed to show the feasibility and practicality of the new method.


2021 ◽  
pp. 1-22
Author(s):  
Baolin Li ◽  
Lihua Yang ◽  
Jie Qian

In practice, picture hesitant fuzzy sets (PHFSs) combining the picture fuzzy sets (PFSs) and hesitant fuzzy sets (HFSs) are suitable to represent more complex multi-criteria decision-making (MCDM) information. The power heronian (PH) operators, which have the merits of power average (PA) and heronian mean (HM) operators, are extended to the environment of PHFSs in this article. First, some algebraic operations of picture hesitant fuzzy numbers (PHFNs), comparative functions and distance measure are introduced. Second, two novel operators, called as picture hesitant fuzzy weighted power heronian (PHFWPH) operator and picture hesitant fuzzy weighted geometric power heronian (PHFWGPH) operator, are defined. Meanwhile, some desirable characteristics and special instances of two operators are investigated as well. Third, a novel MCDM approach applying the proposed PH operators to handle PHFNs is explored. Lastly, to indicate the effectiveness of this novel method, an example regarding MCDM problem is conducted, as well as sensitivity and comparison analysis.


2016 ◽  
Vol 5 (1) ◽  
pp. 19 ◽  
Author(s):  
Faisal Mehmood ◽  
Tahir Mahmood ◽  
Qaisar Khan

In this paper we introduced cubic hesitant fuzzy set and defined internal (external) cubic hesitant fuzzy set, P(R)-union and P(R)-intersection of cubic hesitant fuzzy sets. Furthermore we defined P(R)-addition and P(R)-multiplication of cubic hesitant fuzzy sets. By using the defined operations of cubic hesitant fuzzy sets we proved their different results. We also defined R-weighted averaging and R-weighted geometric operators for cubic hesitant fuzzy sets and practiced it in multi-criteria decision making problem.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 714 ◽  
Author(s):  
José Carlos R. Alcantud ◽  
Gustavo Santos-García ◽  
Xindong Peng ◽  
Jianming Zhan

Hesitant fuzzy sets extend fuzzy sets by considering many-valued sets of membership degrees. Real applications validate this model and decision making approaches of various forms permit to act in a flexible manner. If we can avail ourselves of hesitant information on non-membership degrees too, then dual hesitant fuzzy sets provide a natural extension of both hesitant fuzzy sets and intuitionistic fuzzy sets. This article defines the concept of dual extended hesitant fuzzy set as the combination of extended hesitant fuzzy sets with dual hesitant fuzzy sets. Its basic algebraic properties are set forth, and the model is linked to other successful models in the literature. We also define a comparison law for the prioritization of elements described in this new framework. Moreover, we present an algorithm to solve the dual extended hesitant fuzzy decision making problem by a weight score function. Finally, the feasibility of this approach is demonstrated by the evaluation of big data industries with an effectiveness test.


Author(s):  
Juan-Juan Peng ◽  
Jian-Qiang Wang ◽  
Xiao-Hui Wu

Hesitant fuzzy sets (HFSs), an extension of fuzzy sets, are considered to be useful in solving decision making problems where decision makers are unable to choose between several values when expressing their preferences. The purpose of this paper is to develop two hesitant fuzzy multi-criteria decision making (MCDM) methods based on prospect theory (PT). First, the novel component-wise ordering method for two hesitant fuzzy numbers (HFNs) is defined; however, this method does not consider the length of the two HFNs. Second, by utilizing the directed Hausdorff distance between two imprecise point sets, the generalized hesitant Hausdorff distance is developed, which overcomes the shortcomings of the existing distance measures. Third, based on the proposed comparison method and distance, as well as PT, the extended TODIM and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) approaches are developed in order to solve MCDM problems with hesitant fuzzy information. Finally, a practical example is provided to illustrate the pragmatism and effectiveness of the proposed approaches. Sensitivity and comparison analyses are also conducted using the same example. The findings indicate that the proposed methods do not require complicated computation procedures, yet still yield a reasonable and credible solution.


2014 ◽  
Vol 46 (13) ◽  
pp. 2335-2350 ◽  
Author(s):  
Juan-juan Peng ◽  
Jian-qiang Wang ◽  
Xiao-hui Wu ◽  
Hong-yu Zhang ◽  
Xiao-hong Chen

Sign in / Sign up

Export Citation Format

Share Document