scholarly journals Distributed ADMM using Private Blockchain for Power Flow Optimization in Distribution Network with Coupled and Mixed-Integer Constraints

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chinmay Shah ◽  
Jennifer King ◽  
Richard Wies
2021 ◽  
Vol 9 ◽  
Author(s):  
Boshen Zheng ◽  
Yue Fan ◽  
Wei Wei ◽  
Yourui Xu ◽  
Shaowei Huang ◽  
...  

The technology advancement and cost decline of renewable and sustainable energy increase the penetration of distributed energy resources (DERs) in distribution systems. Transactive energy helps balance the local generation and demand. Peer-to-peer (P2P) energy trading is a promising business model for transactive energy. Such a market scheme can increase the revenue of DER owners and reduce the waste of renewable energy. This article proposes an equilibrium model of a P2P transactive energy market. Every participant seeks the maximum personal interest, with the options of importing or providing energy from/to any other peer across different buses of the distribution network. The market equilibrium condition is obtained by combining the Karush–Kuhn–Tucker conditions of all problems of individual participants together. The energy transaction price is endogenously determined from the market equilibrium condition, which is cast as a mixed-integer linear program and solved by a commercial solver. The transactive energy flow is further embedded in the optimal power flow problem to ensure operating constraints of the distribution network. We propose a remedy to recover a near optimal solution when the second-order cone relaxation is inexact. Finally, a case study demonstrates that the proposed P2P market benefits all participants.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4125
Author(s):  
Miguel Carrión ◽  
Rafael Zárate-Miñano ◽  
Ruth Domínguez

The expected growth of the number of electric vehicles can be challenging for planning and operating power systems. In this sense, distribution networks are considered the Achilles’ heel of the process of adapting current power systems for a high presence of electric vehicles. This paper aims at deciding the maximum number of three-phase high-power charging points that can be installed in a low-voltage residential distribution grid. In order to increase the number of installed charging points, a mixed-integer formulation is proposed to model the provision of decentralized voltage support by electric vehicle chargers. This formulation is afterwards integrated into a modified AC optimal power flow formulation to characterize the steady-state operation of the distribution network during a given planning horizon. The performance of the proposed formulations have been tested in a case study based on the distribution network of La Graciosa island in Spain.


Author(s):  
Hongyi Huang ◽  
Xiaochen Wu ◽  
Ziheng Hu ◽  
Bin Zhang ◽  
Anlong Zhang ◽  
...  

Author(s):  
Jieyun Zheng ◽  
Shiyuan Ni ◽  
Pengjia Shi ◽  
Guilian Wu ◽  
Ri’an Wang ◽  
...  

Considering the fault "N-1" checksum and the power flow, the single-phase power flow model is further transformed into a three-phase power flow model, and the asymmetry of the three-phase power flow is measured by the three-phase unbalance factor. The calculation model is linearized by the second-order cone relaxation and the Big-M method. At the same time, the load response and distribution network reconstruction are used to improve the reliability of the power supply network to cope with the power failure. The relationship between power supply capability and power flow constraints, main transformer capacity and distributed power parameters is analyzed by IEEE 33-node three-phase power distribution system. The feasibility of the proposed model and the accuracy of the second-order cone relaxation are verified by numerical examples, which provides a technical reference for distribution network planning.


Sign in / Sign up

Export Citation Format

Share Document