scholarly journals Deep Learning-Based Short-Term Load Forecasting Approach in Smart Grid With Clustering and Consumption Pattern Recognition

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 54992-55008
Author(s):  
Dabeeruddin Syed ◽  
Haitham Abu-Rub ◽  
Ali Ghrayeb ◽  
Shady S. Refaat ◽  
Mahdi Houchati ◽  
...  
2021 ◽  
pp. 1-1
Author(s):  
Lianjie Jiang ◽  
Xinli Wang ◽  
Wei Li ◽  
Lei Wang ◽  
Xiaohong Yin ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 2742
Author(s):  
Fatih Ünal ◽  
Abdulaziz Almalaq ◽  
Sami Ekici

Short-term load forecasting models play a critical role in distribution companies in making effective decisions in their planning and scheduling for production and load balancing. Unlike aggregated load forecasting at the distribution level or substations, forecasting load profiles of many end-users at the customer-level, thanks to smart meters, is a complicated problem due to the high variability and uncertainty of load consumptions as well as customer privacy issues. In terms of customers’ short-term load forecasting, these models include a high level of nonlinearity between input data and output predictions, demanding more robustness, higher prediction accuracy, and generalizability. In this paper, we develop an advanced preprocessing technique coupled with a hybrid sequential learning-based energy forecasting model that employs a convolution neural network (CNN) and bidirectional long short-term memory (BLSTM) within a unified framework for accurate energy consumption prediction. The energy consumption outliers and feature clustering are extracted at the advanced preprocessing stage. The novel hybrid deep learning approach based on data features coding and decoding is implemented in the prediction stage. The proposed approach is tested and validated using real-world datasets in Turkey, and the results outperformed the traditional prediction models compared in this paper.


2020 ◽  
Vol 32 (18) ◽  
pp. 15029-15041 ◽  
Author(s):  
Nadjib Mohamed Mehdi Bendaoud ◽  
Nadir Farah

2019 ◽  
Vol 9 (9) ◽  
pp. 1723 ◽  
Author(s):  
Juncheng Zhu ◽  
Zhile Yang ◽  
Yuanjun Guo ◽  
Jiankang Zhang ◽  
Huikun Yang

Short-term load forecasting is a key task to maintain the stable and effective operation of power systems, providing reasonable future load curve feeding to the unit commitment and economic load dispatch. In recent years, the boost of internal combustion engine (ICE) based vehicles leads to the fossil fuel shortage and environmental pollution, bringing significant contributions to the greenhouse gas emissions. One of the effective ways to solve problems is to use electric vehicles (EVs) to replace the ICE based vehicles. However, the mass rollout of EVs may cause severe problems to the power system due to the huge charging power and stochastic charging behaviors of the EVs drivers. The accurate model of EV charging load forecasting is, therefore, an emerging topic. In this paper, four featured deep learning approaches are employed and compared in forecasting the EVs charging load from the charging station perspective. Numerical results show that the gated recurrent units (GRU) model obtains the best performance on the hourly based historical data charging scenarios, and it, therefore, provides a useful tool of higher accuracy in terms of the hourly based short-term EVs load forecasting.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wei Guo ◽  
Kai Zhang ◽  
Xinjie Wei ◽  
Mei Liu

Short-term load forecasting is an important part to support the planning and operation of power grid, but the current load forecasting methods have the problem of poor adaptive ability of model parameters, which are difficult to ensure the demand for efficient and accurate power grid load forecasting. To solve this problem, a short-term load forecasting method for smart grid is proposed based on multilayer network model. This method uses the integrated empirical mode decomposition (IEMD) method to realize the orderly and reliable load state data and provides high-quality data support for the prediction network model. The enhanced network inception module is used to adaptively adjust the parameters of the deep neural network (DNN) prediction model to improve the fitting and tracking ability of the prediction network. At the same time, the introduction of hybrid particle swarm optimization algorithm further enhances the dynamic optimization ability of deep reinforcement learning model parameters and can realize the accurate prediction of short-term load of smart grid. The simulation results show that the mean absolute percentage error e MAPE and root-mean-square error e RMSE of the performance indexes of the prediction model are 10.01% and 2.156 MW, respectively, showing excellent curve fitting ability and load forecasting ability.


Sign in / Sign up

Export Citation Format

Share Document