scholarly journals An improved bearing fault diagnosis scheme based on Hierarchical fuzzy entropy and Alexnet network

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xiaoyu Shi ◽  
Gen Qiu ◽  
Chun Yin ◽  
Xuegang Huang ◽  
Kai Chen ◽  
...  
Author(s):  
Keheng Zhu ◽  
Haolin Li

Aiming at the non-linear characteristics of bearing vibration signals as well as the complexity of condition-indicating information distribution in the signals, a new rolling element bearing fault diagnosis method based on hierarchical fuzzy entropy and support vector machine is proposed in this paper. By incorporating the advantages of both the concept of fuzzy sets and the hierarchical decomposition of hierarchical entropy, hierarchical fuzzy entropy is developed to extract the fault features from the bearing vibration signals, which can provide more useful information reflecting bearing working conditions than hierarchical entropy. After feature extraction with hierarchical fuzzy entropy, a multi-class support vector machine is trained and then employed to fulfill an automated bearing fault diagnosis. The experimental results demonstrate that the proposed approach can identify different bearing fault types as well as severities precisely.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1128
Author(s):  
Xiaoan Yan ◽  
Yadong Xu ◽  
Minping Jia

The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results.


Author(s):  
Arman Malhotra ◽  
Amrinder Singh Minhas ◽  
Sukhjeet Singh ◽  
Ming J. Zuo ◽  
Ravinder Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document