scholarly journals An Amplified COCOMO-II based Cost Estimation Model in Global Software Development Context

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Junaid Ali Khan ◽  
Saif Ur Rehman Khan ◽  
Tamim Ahmed Khan ◽  
Inayat Ur Rehman Khan
Author(s):  
Iman Attarzadeh ◽  
Siew Hock Ow

Software companies have to manage different software projects based on different time, cost, and manpower requirement, which is a very complex task in software project management. Accurate software estimates at the early phase of software development is one of the crucial objectives and a great challenge in software project management, in the last decades. Since software development attributes are vague and uncertain at the early phase of development, software estimates tend to a certain degree of estimation error. A software development cost estimation model incorporates soft computing techniques provides a solution to fit the vagueness and uncertainty of software attributes. In this paper, an adaptive artificial neural network (ANN) architecture for Constructive Cost Model (COCOMO) is proposed in order to produce accurate software estimates. The ANN is utilized to determine the importance of calibration of the software attributes using past project data in order to produce accurate software estimates. Software project data from the COCOMO I and NASA'93 data sets were used in the evaluation of the proposed model. The result shows an improvement in estimation accuracy of 8.36% of the ANN-COCOMO II when compared with the original COCOMO II.


2020 ◽  
pp. 1-8
Author(s):  
Aman Ullah ◽  
Bin Wang ◽  
Jinfang Sheng ◽  
Jun Long ◽  
Muhammad Asim ◽  
...  

Estimating of software cost (ESC) is considered a crucial task in the software management life cycle as well as time and quality. Prior to the development of a software project, precise estimations are required in the form of person month and time. In the last few decades, various parametric and non-algorithmic or non-parametric regarding the estimating of software costs have been developed. Among them, the constrictive cost model (COCOMO-II) is a commonly used method for estimating software cost. To further improve the accuracy of this model, researchers and practitioners have applied numerous computational intelligence algorithms to optimize their parameters. However, accuracy is still a big problem in this model to be addressed. In this paper, we proposed a biogeography-based optimization (BBO) method to optimize the current coefficients of COCOMO-II for better estimating of software project cost or effort. The experiments are conducted on two standard data sets: NASA-93 and Turkish Industry software projects. The performance of the proposed algorithm called BBO-COCOMO-II is evaluated by using performance indicators including the Manhattan distance (MD) and the mean magnitude of relative error (MMRE). Simulation results reveal that the proposed algorithm obtained high accuracy and significant error minimization compared to original COCOMO-II, particle swarm optimization, genetic algorithm, flower pollination algorithm, and other various baseline cost estimation models.


Sign in / Sign up

Export Citation Format

Share Document