scholarly journals TSVNet: Combining Time-Series and Opportunistic Sensing by Transfer Learning for Dynamic Thermal Sensation Estimation

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 102835-102846
Author(s):  
Hiroki Yoshikawa ◽  
Akira Uchiyama ◽  
Teruo Higashino
2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1590
Author(s):  
Arnak Poghosyan ◽  
Ashot Harutyunyan ◽  
Naira Grigoryan ◽  
Clement Pang ◽  
George Oganesyan ◽  
...  

The main purpose of an application performance monitoring/management (APM) software is to ensure the highest availability, efficiency and security of applications. An APM software accomplishes the main goals through automation, measurements, analysis and diagnostics. Gartner specifies the three crucial capabilities of APM softwares. The first is an end-user experience monitoring for revealing the interactions of users with application and infrastructure components. The second is application discovery, diagnostics and tracing. The third key component is machine learning (ML) and artificial intelligence (AI) powered data analytics for predictions, anomaly detection, event correlations and root cause analysis. Time series metrics, logs and traces are the three pillars of observability and the valuable source of information for IT operations. Accurate, scalable and robust time series forecasting and anomaly detection are the requested capabilities of the analytics. Approaches based on neural networks (NN) and deep learning gain an increasing popularity due to their flexibility and ability to tackle complex nonlinear problems. However, some of the disadvantages of NN-based models for distributed cloud applications mitigate expectations and require specific approaches. We demonstrate how NN-models, pretrained on a global time series database, can be applied to customer specific data using transfer learning. In general, NN-models adequately operate only on stationary time series. Application to nonstationary time series requires multilayer data processing including hypothesis testing for data categorization, category specific transformations into stationary data, forecasting and backward transformations. We present the mathematical background of this approach and discuss experimental results based on implementation for Wavefront by VMware (an APM software) while monitoring real customer cloud environments.


2021 ◽  
Author(s):  
Menuka Warushavithana ◽  
Saptashwa Mitra ◽  
Mazdak Arabi ◽  
Jay Breidt ◽  
Sangmi Lee Pallickara ◽  
...  

2021 ◽  
Author(s):  
Süleyman UZUN ◽  
Sezgin KAÇAR ◽  
Burak ARICIOĞLU

Abstract In this study, for the first time in the literature, identification of different chaotic systems by classifying graphic images of their time series with deep learning methods is aimed. For this purpose, a data set is generated that consists of the graphic images of time series of the most known three chaotic systems: Lorenz, Chen, and Rossler systems. The time series are obtained for different parameter values, initial conditions, step size and time lengths. After generating the data set, a high-accuracy classification is performed by using transfer learning method. In the study, the most accepted deep learning models of the transfer learning methods are employed. These models are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet and GoogLeNet. As a result of the study, classification accuracy is found between 96% and 97% depending on the problem. Thus, this study makes association of real time random signals with a mathematical system possible.


2021 ◽  
Author(s):  
Sriram Baireddy ◽  
Sundip R. Desai ◽  
James L. Mathieson ◽  
Richard H. Foster ◽  
Moses W. Chan ◽  
...  

2021 ◽  
Author(s):  
Erik Otović ◽  
Marko Njirjak ◽  
Dario Jozinović ◽  
Goran Mauša ◽  
Alberto Michelini ◽  
...  

<p>In this study, we compared the performance of machine learning models trained using transfer learning and those that were trained from scratch - on time series data. Four machine learning models were used for the experiment. Two models were taken from the field of seismology, and the other two are general-purpose models for working with time series data. The accuracy of selected models was systematically observed and analyzed when switching within the same domain of application (seismology), as well as between mutually different domains of application (seismology, speech, medicine, finance). In seismology, we used two databases of local earthquakes (one in counts, and the other with the instrument response removed) and a database of global earthquakes for predicting earthquake magnitude; other datasets targeted classifying spoken words (speech), predicting stock prices (finance) and classifying muscle movement from EMG signals (medicine).<br>In practice, it is very demanding and sometimes impossible to collect datasets of tagged data large enough to successfully train a machine learning model. Therefore, in our experiment, we use reduced data sets of 1,500 and 9,000 data instances to mimic such conditions. Using the same scaled-down datasets, we trained two sets of machine learning models: those that used transfer learning for training and those that were trained from scratch. We compared the performances between pairs of models in order to draw conclusions about the utility of transfer learning. In order to confirm the validity of the obtained results, we repeated the experiments several times and applied statistical tests to confirm the significance of the results. The study shows when, within the set experimental framework, the transfer of knowledge brought improvements in terms of model accuracy and in terms of model convergence rate.<br><br>Our results show that it is possible to achieve better performance and faster convergence by transferring knowledge from the domain of global earthquakes to the domain of local earthquakes; sometimes also vice versa. However, improvements in seismology can sometimes also be achieved by transferring knowledge from medical and audio domains. The results show that the transfer of knowledge between other domains brought even more significant improvements, compared to those within the field of seismology. For example, it has been shown that models in the field of sound recognition have achieved much better performance compared to classical models and that the domain of sound recognition is very compatible with knowledge from other domains. We came to similar conclusions for the domains of medicine and finance. Ultimately, the paper offers suggestions when transfer learning is useful, and the explanations offered can provide a good starting point for knowledge transfer using time series data.</p>


2019 ◽  
Vol 31 (3) ◽  
pp. 777-787 ◽  
Author(s):  
Werner Zellinger ◽  
Thomas Grubinger ◽  
Michael Zwick ◽  
Edwin Lughofer ◽  
Holger Schöner ◽  
...  

Abstract This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract


2019 ◽  
Vol 4 (2) ◽  
pp. 112-137 ◽  
Author(s):  
Priyanka Gupta ◽  
Pankaj Malhotra ◽  
Jyoti Narwariya ◽  
Lovekesh Vig ◽  
Gautam Shroff

Author(s):  
Sreyasee Das Bhattacharjee ◽  
William J. Tolone ◽  
Ashish Mahabal ◽  
Mohammed Elshambakey ◽  
Isaac Cho ◽  
...  

Author(s):  
Chandrachur Bhattacharya ◽  
Asok Ray

Abstract Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is 'transferred' to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyse a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time series analysis (STSA)-based transfer learning, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is 'transferred' to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed transfer learning have been validated by comparison with those of two shallow neural networks (NN)-based TL and another NN having an additional long-short-term-memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.


Sign in / Sign up

Export Citation Format

Share Document