scholarly journals Model Predictive Control With Learned Vehicle Dynamics for Autonomous Vehicle Path Tracking

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 128233-128249
Author(s):  
Mohammad Rokonuzzaman ◽  
Navid Mohajer ◽  
Saeid Nahavandi ◽  
Shady Mohamed
Author(s):  
Fen Lin ◽  
Shaobo Wang ◽  
Youqun Zhao ◽  
Yizhang Cai

For autonomous vehicle path tracking control, the general path tracking controllers usually only consider vehicle dynamics’ constraints, without taking vehicle stability evaluation index into account. In this paper, a linear three-degree-of-freedom vehicle dynamics model is used as a predictive model. A comprehensive control method combining Model Predictive Control and Fuzzy proportional–integral–derivative control is proposed. Model Predictive Control is used to control the vehicle yaw stability and track the target path by considering the front wheel angle, sideslip angle, tire slip angles, and yaw rate during the path tracking. Fuzzy proportional–integral–derivative algorithm is adopted to maintain the vehicle roll stability by controlling the braking force of each tire. Co-simulation with CarSim and MATLAB/Simulink shows the designed controller has good tracking performance. The controller is smooth and effective and ensures handling stability in tracking the target path.


2019 ◽  
Vol 9 (22) ◽  
pp. 4739 ◽  
Author(s):  
Yao ◽  
Tian

Autonomous vehicle path tracking accuracy faces challenges in being accomplished due to the assumption that the longitudinal speed is constant in the prediction horizon in a model predictive control (MPC) control frame. A model predictive control path tracking controller with longitudinal speed compensation in the prediction horizon is proposed in this paper, which reduces the lateral deviation, course deviation, and maintains vehicle stability. The vehicle model, tire model, and path tracking model are described and linearized using the small angle approximation method and an equivalent cornering stiffness method. The mechanism of action of longitudinal speed changed with state vector variation, and the stability of the path tracking closed-loop control system in the prediction horizon is analyzed in this paper. Then the longitudinal speed compensation strategy is proposed to reduce tracking error. The controller designed was tested through simulation on the CarSim-Simulink platform, and it showed improved performance in tracking accuracy and satisfied vehicle stability constrains.


2020 ◽  
Vol 1650 ◽  
pp. 032028
Author(s):  
Qijiang Xu ◽  
Jian Wang ◽  
Wenzheng Zhao ◽  
Jinchuan Ding ◽  
Xinjie Liu

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2703
Author(s):  
Jui-An Yang ◽  
Chung-Hsien Kuo

This paper presents the implementation of an autonomous electric vehicle (EV) project in the National Taiwan University of Science and Technology (NTUST) campus in Taiwan. The aim of this work was to integrate two important practices of realizing an autonomous vehicle in a campus environment, including vehicle positioning and path tracking. Such a project is helpful to the students to learn and practice key technologies of autonomous vehicles conveniently. Therefore, a laboratory-made EV was equipped with real-time kinematic GPS (RTK-GPS) to provide centimeter position accuracy. Furthermore, the model predictive control (MPC) was proposed to perform the path tracking capability. Nevertheless, the RTK-GPS exhibited some robust positioning concerns in practical application, such as a low update rate, signal obstruction, signal drift, and network instability. To solve this problem, a multisensory fusion approach using an unscented Kalman filter (UKF) was utilized to improve the vehicle positioning performance by further considering an inertial measurement unit (IMU) and wheel odometry. On the other hand, the model predictive control (MPC) is usually used to control autonomous EVs. However, the determination of MPC parameters is a challenging task. Hence, reinforcement learning (RL) was utilized to generalize the pre-trained datum value for the determination of MPC parameters in practice. To evaluate the performance of the RL-based MPC, software simulations using MATLAB and a laboratory-made, full-scale electric vehicle were arranged for experiments and validation. In a 199.27 m campus loop path, the estimated travel distance error was 0.82% in terms of UKF. The MPC parameters generated by RL also achieved a better tracking performance with 0.227 m RMSE in path tracking experiments, and they also achieved a better tracking performance when compared to that of human-tuned MPC parameters.


2019 ◽  
Author(s):  
Jiaxing Yu ◽  
Xuexun Guo ◽  
Xiaofei Pei ◽  
Zhenfu Chen ◽  
Maolin Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document