Trust in the European Central Bank: Using Data Science and predictive Machine Learning Algorithms

Author(s):  
Andrii Skirka ◽  
Bogdan Adamyk ◽  
Oksana Adamyk ◽  
Mariana Valytska
Author(s):  
R. Suganya ◽  
Rajaram S. ◽  
Kameswari M.

Currently, thyroid disorders are more common and widespread among women worldwide. In India, seven out of ten women are suffering from thyroid problems. Various research literature studies predict that about 35% of Indian women are examined with prevalent goiter. It is very necessary to take preventive measures at its early stages, otherwise it causes infertility problem among women. The recent review discusses various analytics models that are used to handle different types of thyroid problems in women. This chapter is planned to analyze and compare different classification models, both machine learning algorithms and deep leaning algorithms, to classify different thyroid problems. Literature from both machine learning and deep learning algorithms is considered. This literature review on thyroid problems will help to analyze the reason and characteristics of thyroid disorder. The dataset used to build and to validate the algorithms was provided by UCI machine learning repository.


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


Author(s):  
P. Priakanth ◽  
S. Gopikrishnan

The idea of an intelligent, independent learning machine has fascinated humans for decades. The philosophy behind machine learning is to automate the creation of analytical models in order to enable algorithms to learn continuously with the help of available data. Since IoT will be among the major sources of new data, data science will make a great contribution to make IoT applications more intelligent. Machine learning can be applied in cases where the desired outcome is known (guided learning) or the data is not known beforehand (unguided learning) or the learning is the result of interaction between a model and the environment (reinforcement learning). This chapter answers the questions: How could machine learning algorithms be applied to IoT smart data? What is the taxonomy of machine learning algorithms that can be adopted in IoT? And what are IoT data characteristics in real-world which requires data analytics?


2021 ◽  
Author(s):  
Yiqi Jack Gao ◽  
Yu Sun

The start of 2020 marked the beginning of the deadly COVID-19 pandemic caused by the novel SARS-COV-2 from Wuhan, China. As of the time of writing, the virus had infected over 150 million people worldwide and resulted in more than 3.5 million global deaths. Accurate future predictions made through machine learning algorithms can be very useful as a guide for hospitals and policy makers to make adequate preparations and enact effective policies to combat the pandemic. This paper carries out a two pronged approach to analyzing COVID-19. First, the model utilizes the feature significance of random forest regressor to select eight of the most significant predictors (date, new tests, weekly hospital admissions, population density, total tests, total deaths, location, and total cases) for predicting daily increases of Covid-19 cases, highlighting potential target areas in order to achieve efficient pandemic responses. Then it utilizes machine learning algorithms such as linear regression, polynomial regression, and random forest regression to make accurate predictions of daily COVID-19 cases using a combination of this diverse range of predictors and proved to be competent at generating predictions with reasonable accuracy.


Author(s):  
Jiarui Yin ◽  
Inikuro Afa Michael ◽  
Iduabo John Afa

Machine learning plays a key role in present day crime detection, analysis and prediction. The goal of this work is to propose methods for predicting crimes classified into different categories of severity. We implemented visualization and analysis of crime data statistics in recent years in the city of Boston. We then carried out a comparative study between two supervised learning algorithms, which are decision tree and random forest based on the accuracy and processing time of the models to make predictions using geographical and temporal information provided by splitting the data into training and test sets. The result shows that random forest as expected gives a better result by 1.54% more accuracy in comparison to decision tree, although this comes at a cost of at least 4.37 times the time consumed in processing. The study opens doors to application of similar supervised methods in crime data analytics and other fields of data science


Sign in / Sign up

Export Citation Format

Share Document