Opportunistic Meta-Learning: A Case Study for Quality Assurance in Industry 4.0 Environments

Author(s):  
Simon Reichhuber ◽  
Sven Tomlorde
Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 641-646
Author(s):  
Peter Burggräf ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro R. Pérez M. ◽  
...  

2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Author(s):  
Peter Burggraef ◽  
Johannes Wagner ◽  
Benjamin Heinbach ◽  
Fabian Steinberg ◽  
Alejandro Perez ◽  
...  

Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for predictive analytics in QA based on machine sensor values during production while employing specialized machine-learning models for classification in a controlled environment. Furthermore, we present lessons learned while implementing this model, which helps to reduce complexity in further industrial applications. The paper’s outcome proves that the developed model was able to predict product quality, as well as to identify the correlation between machine-status and faulty product occurrence.


2021 ◽  
Vol 11 (8) ◽  
pp. 3438
Author(s):  
Jorge Fernandes ◽  
João Reis ◽  
Nuno Melão ◽  
Leonor Teixeira ◽  
Marlene Amorim

This article addresses the evolution of Industry 4.0 (I4.0) in the automotive industry, exploring its contribution to a shift in the maintenance paradigm. To this end, we firstly present the concepts of predictive maintenance (PdM), condition-based maintenance (CBM), and their applications to increase awareness of why and how these concepts are revolutionizing the automotive industry. Then, we introduce the business process management (BPM) and business process model and notation (BPMN) methodologies, as well as their relationship with maintenance. Finally, we present the case study of the Renault Cacia, which is developing and implementing the concepts mentioned above.


Author(s):  
Mohsen Memaran ◽  
Cristiana Delprete ◽  
Eugenio Brusa ◽  
Abbas Razavykia ◽  
Paolo Baldissera

2021 ◽  
Vol 13 (11) ◽  
pp. 5768
Author(s):  
Hugo A López ◽  
Pedro Ponce ◽  
Arturo Molina ◽  
María Soledad Ramírez-Montoya ◽  
Edgar Lopez-Caudana

Nowadays, engineering students have to improve specific competencies to tackle the challenges of 21st-century-industry, referred to as Industry 4.0. Hence, this article describes the integration and implementation of Education 4.0 strategies with the new educational model of our university to respond to the needs of Industry 4.0 and society. The TEC21 Educational Model implemented at Tecnologico de Monterrey in Mexico aims to develop disciplinary and transversal competencies for creative and strategic problem-solving of present and future challenges. Education 4.0, as opposed to traditional education, seeks to provide solutions to these challenges through innovative pedagogies supported by emerging technologies. This article presents a case study of a Capstone project developed with undergraduate engineering students. The proposed structure integrates the TEC21 model and Education 4.0 through new strategies and laboratories, all linked to industry. The results of a multidisciplinary project focused on an electric vehicle racing team are presented, composed of Education 4.0 elements and competencies development in leadership, innovation, and entrepreneurship. The project was a collaboration between academia and the productive sector. The results verified the students’ success in acquiring the necessary competencies and skills to become technological leaders in today’s modern industry. One of the main contributions shown is a suitable education framework for bringing together the characteristics established by Education 4.0 and achieved by our educational experience based on Education 4.0.


Sign in / Sign up

Export Citation Format

Share Document