Active exploration for robot parameter selection in episodic reinforcement learning

Author(s):  
Oliver Kroemer ◽  
Jan Peters
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 614
Author(s):  
Zhenhuan Ding ◽  
Xiaoge Huang ◽  
Zhao Liu

Voltage regulation in distribution networks encounters a challenge of handling uncertainties caused by the high penetration of photovoltaics (PV). This research proposes an active exploration (AE) method based on reinforcement learning (RL) to respond to the uncertainties by regulating the voltage of a distribution network with battery energy storage systems (BESS). The proposed method integrates engineering knowledge to accelerate the training process of RL. The engineering knowledge is the chance-constrained optimization. We formulate the problem in a chance-constrained optimization with a linear load flow approximation. The optimization results are used to guide the action selection of the exploration for improving training efficiency and reducing the conserveness characteristic. The comparison of methods focuses on how BESSs are used, training efficiency, and robustness under varying uncertainties and BESS sizes. We implement the proposed algorithm, a chance-constrained optimization, and a traditional Q-learning in the IEEE 13 Node Test Feeder. Our evaluation shows that the proposed AE method has a better response to the training efficiency compared to traditional Q-learning. Meanwhile, the proposed method has advantages in BESS usage in conserveness compared to the chance-constrained optimization.


2019 ◽  
Vol 29 (2) ◽  
pp. 351-362
Author(s):  
Dongfang Zhao ◽  
Jiafeng Liu ◽  
Rui Wu ◽  
Dansong Cheng ◽  
Xianglong Tang

Abstract Reinforcement learning (RL) constitutes an effective method of controlling dynamic systems without prior knowledge. One of the most important and difficult problems in RL is the improvement of data efficiency. Probabilistic inference for learning control (PILCO) is a state-of-the-art data-efficient framework that uses a Gaussian process to model dynamic systems. However, it only focuses on optimizing cumulative rewards and does not consider the accuracy of a dynamic model, which is an important factor for controller learning. To further improve the data efficiency of PILCO, we propose its active exploration version (AEPILCO) that utilizes information entropy to describe samples. In the policy evaluation stage, we incorporate an information entropy criterion into long-term sample prediction. Through the informative policy evaluation function, our algorithm obtains informative policy parameters in the policy improvement stage. Using the policy parameters in the actual execution produces an informative sample set; this is helpful in learning an accurate dynamic model. Thus, the AEPILCO algorithm improves data efficiency by learning an accurate dynamic model by actively selecting informative samples based on the information entropy criterion. We demonstrate the validity and efficiency of the proposed algorithm for several challenging controller problems involving a cart pole, a pendubot, a double pendulum, and a cart double pendulum. The AEPILCO algorithm can learn a controller using fewer trials compared to PILCO. This is verified through theoretical analysis and experimental results.


Sign in / Sign up

Export Citation Format

Share Document