scholarly journals Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System

Author(s):  
Jim Simpson ◽  
Jason Badgley ◽  
Ken McCaughey ◽  
Kristen Brown ◽  
Philip Calhoun ◽  
...  
Author(s):  
Mark Karpenko ◽  
Julie K. Halverson ◽  
Rebecca Besser

Closed-loop attitude steering is a concept for implementing an attitude trajectory by using a conventional quaternion error feedback controller to track the time-varying attitude reference, rather than to simply regulate to a desired orientation. This is done by sampling the reference input and executing the maneuver as a sequence of closely spaced regulating commands that are read out from the spacecraft’s command buffer. The idea has been employed in practice to perform zero-propellant maneuvers on the International Space Station and minimum-time maneuvers on NASA’s TRACE space telescope as well as NASA’s Lunar Reconnaissance Orbiter (LRO). A challenge for operational implementation of the idea is the limited capacity of a space vehicle’s command storage buffer, which is normally not designed with attitude tracking in mind. One approach to mitigate the problem is to downsample-and-hold the attitude commands so that the attitude control system (ACS) regulates to a series of waypoints. This article explores the waypoint following dynamics of a quaternion error feedback control law for such an approach. It is shown that downsample-and-hold induces a ripple between downsamples that causes the satellite angular rate to significantly overshoot the desired limit. Analysis in the z-domain is carried out in order to understand the phenomenon. An interpolating Chebyshev-type filter is proposed that allows the desired attitude trajectory to alternatively be encoded in terms of a small set of filter coefficients. Using the interpolating filter, the continuous-time reference trajectory can be reconstructed and issued at the ACS rate but with significantly reduced memory requirements. The ACS of the LRO is used as an example to illustrate the behavior of a practical ACS.


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

2020 ◽  
Vol 28 (10) ◽  
pp. 2192-2202
Author(s):  
Feng WANG ◽  
◽  
Shi-bo NIU ◽  
Cheng-fei YUE ◽  
Fan WU ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4905
Author(s):  
Angel Porras-Hermoso ◽  
Daniel Alfonso-Corcuera ◽  
Javier Piqueras ◽  
Elena Roibás-Millán ◽  
Javier Cubas ◽  
...  

This paper presents the development of the UPMSat-2 sun sensor, from the design to on-orbit operation. It also includes the testing of the instrument, one of the most important tasks that needs to be performed to operate a sensor with precision. The UPMSat-2 solar sensor has been designed, tested, and manufactured at the Universidad Politécnica de Madrid (UPM) using 3D printing and COTS (photodiodes). The work described in this paper was carried out by students and teachers of the Master in Space Systems (Máster Universitario en Sistemas Espaciales—MUSE). The solar sensor is composed of six photodiodes that are divided into two sets; each set is held and oriented on the satellite by its corresponding support printed in Delrin. The paper describes the choice of components, the electrical diagram, and the manufacture of the supports. The methodology followed to obtain the response curve of each photodiode is simple and inexpensive, as it requires a limited number of instruments and tools. The selected irradiance source was a set of red LEDs and halogen instead of an AM0 spectrum irradiance simulator. Some early results from the UPMSat-2 mission have been analyzed in the present paper. Data from magnetometers and the attitude control system have been used to validate the data obtained from the sun sensor. The results indicate a good performance of the sensors during flight, in accordance with the data from the ground tests.


Sign in / Sign up

Export Citation Format

Share Document