scholarly journals Integrating human performance measures into space operations: Beyond our scheduling capabilities?

Author(s):  
Jessica J. Marquez
2009 ◽  
Vol 18 (6) ◽  
pp. 449-467 ◽  
Author(s):  
Joel C Huegel ◽  
Ozkan Celik ◽  
Ali Israr ◽  
Marcia K O'Malley

This paper introduces and validates quantitative performance measures for a rhythmic target-hitting task. These performance measures are derived from a detailed analysis of human performance during a month-long training experiment where participants learned to operate a 2-DOF haptic interface in a virtual environment to execute a manual control task. The motivation for the analysis presented in this paper is to determine measures of participant performance that capture the key skills of the task. This analysis of performance indicates that two quantitative measures—trajectory error and input frequency—capture the key skills of the target-hitting task, as the results show a strong correlation between the performance measures and the task objective of maximizing target hits. The performance trends were further explored by grouping the participants based on expertise and examining trends during training in terms of these measures. In future work, these measures will be used as inputs to a haptic guidance scheme that adjusts its control gains based on a real-time assessment of human performance of the task. Such guidance schemes will be incorporated into virtual training environments for humans to develop manual skills for domains such as surgery, physical therapy, and sports.


Robotica ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Jingzhou (James) Yang ◽  
Tim Marler ◽  
Salam Rahmatalla

SUMMARYPosture prediction plays an important role in product design and manufacturing. There is a need to develop a more efficient method for predicting realistic human posture. This paper presents a method based on multi-objective optimization (MOO) for kinematic posture prediction and experimental validation. The predicted posture is formulated as a multi-objective optimization problem. The hypothesis is that human performance measures (cost functions) govern how humans move. Twelve subjects, divided into four groups according to different percentiles, participated in the experiment. Four realistic in-vehicle tasks requiring both simple and complex functionality of the human simulations were chosen. The subjects were asked to reach the four target points, and the joint centers for the wrist, elbow, and shoulder and the joint angle of the elbow were recorded using a motion capture system. We used these data to validate our model. The validation criteria comprise R-square and confidence intervals. Various physics factors were included in human performance measures. The weighted sum of different human performance measures was used as the objective function for posture prediction. A two-domain approach was also investigated to validate the simulated postures. The coefficients of determinant for both within-percentiles and cross-percentiles are larger than 0.70. The MOO-based approach can predict realistic upper body postures in real time and can easily incorporate different scenarios in the formulation. This validated method can be deployed in the digital human package as a design tool.


Robotica ◽  
2009 ◽  
Vol 27 (4) ◽  
pp. 607-620 ◽  
Author(s):  
Zan Mi ◽  
Jingzhou (James) Yang ◽  
Karim Abdel-Malek

SUMMARYA general methodology and associated computational algorithm for predicting postures of the digital human upper body is presented. The basic plot for this effort is an optimization-based approach, where we believe that different human performance measures govern different tasks. The underlying problem is characterized by the calculation (or prediction) of the human performance measure in such a way as to accomplish a specified task. In this work, we have not limited the number of degrees of freedom associated with the model. Each task has been defined by a number of human performance measures that are mathematically represented by cost functions that evaluate to a real number. Cost functions are then optimized, i.e., minimized or maximized, subject to a number of constraints, including joint limits. The formulation is demonstrated and validated. We present this computational formulation as a broadly applicable algorithm for predicting postures using one or more human performance measures.


2012 ◽  
Vol 09 (02) ◽  
pp. 1250012 ◽  
Author(s):  
YUJIANG XIANG ◽  
JASBIR S. ARORA ◽  
KARIM ABDEL-MALEK

This paper presents an optimization-based method for predicting a human dynamic lifting task. The three-dimensional digital human skeletal model has 55 degrees of freedom. Lifting motion is generated by minimizing an objective function (human performance measure) subjected to basic physical and kinematical constraints. Four objective functions are investigated in the formulation: the dynamic effort, the balance criterion, the maximum shear force at spine joint and the maximum pressure force at spine joint. The simulation results show that various human performance measures predict different lifting strategies: the balance and shear force performance measures predict back-lifting motion and the dynamic effort and pressure force performance measures generate squat-lifting motion. In addition, the effects of box locations on the lifting strategies are also studied. All kinematics and kinetic data are successfully predicted for the lifting motion by using the predictive dynamics algorithm and the optimal solution was obtained in about one minute.


Sign in / Sign up

Export Citation Format

Share Document