pressure force
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 89)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Sam E. Stephens ◽  
Alexander J. Kammien ◽  
Jacob C. Paris ◽  
Alexis P. Applequist ◽  
Neil B. Ingels ◽  
...  

AbstractCurrent in vitro models of the left heart establish the pressure difference required to close the mitral valve by sealing and pressurizing the ventricular side of the valve, limiting important access to the subvalvular apparatus. This paper describes and evaluates a system that establishes physiological pressure differences across the valve using vacuum on the atrial side. The subvalvular apparatus is open to atmospheric pressure and accessible by tools and sensors, establishing a novel technique for experimentation on atrioventricular valves. Porcine mitral valves were excised and closed by vacuum within the atrial chamber. Images were used to document and analyze closure of the leaflets. Papillary muscle force and regurgitant flow rate were measured to be 4.07 N at 120 mmHg and approximately 12.1 ml/s respectively, both of which are within clinically relevant ranges. The relative ease of these measurements demonstrates the usefulness of improved ventricular access at peak pressure/force closure. Graphical abstract


Author(s):  
S. A. Chizhik ◽  
O. M. Volchek ◽  
V. Y. Prushak

Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when interacting the powder being compacted with the rolls. Considering the separation of the feed and compaction areas in the contact area of the roll with the material being compacted, we obtain the dependence of the force acting on the roll on the gap size between the rolls. It is shown that this dependence is non-linear, and it can be described with a sufficiently high accuracy degree by an exponential function with a negative exponent in the working range. The given numerical solution of the equation of free nonlinear oscillations of the spring-loaded roll has shown that considering the deformation of the material being compacted leads to a reduction of the natural frequency of the system by 20–25 % compared to the case, where the pressure force of the powder on the roll is assumed to be independent of the gap size. The nonlinearity of the dependence of the pressure force on the gap also leads to the increase by 10 % in the calculated values of the maximum displacements. The developed approach to the calculation of oscillations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows estimating the frequencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the occurrence of resonance in the machine is not possible.


2021 ◽  
pp. 22-30
Author(s):  
Oleksandr Safronov ◽  
◽  
Yurii Vodiannikov ◽  

The paper deals with the analysis of the braking efficiency criteria for freight trains formed with wagons that have increased axle load up to 294.3 kN (30 ts) when moving at speeds up to 120 km/h inclusive. Increasing the efficiency of freight trains by increasing the technical and economic performance of cars by increasing the axial load to 294.3 kN (30 ts) and train speeds up to 160 km/h led to the development of technical requirements and rules for braking systems set out in HOST 34434-18. According to the new rules and requirements, the following are accepted as criteria for the braking efficiency of freight wagons, that is, up to the maximum values of the braking distances of the freight train on the site in the specified intervals of speeds of axial loads; calculated coefficients of force of pressing of composite blocks on wheels at braking; the pressing force of the composite pads on the axis in terms of cast iron pads. The calculation of the maximum allowable value of the braking distance of the freight train is performed based on the actual pressing forces and the actual friction coefficients. The paper shows that the specific braking forces obtained using the actual pressing forces exceed the calculated specific braking forces using the calculated coefficients. Based on the above-mentioned, it is concluded that the braking efficiency criteria with reference to the maximum allowable values of the braking distances and the calculated coefficients of the pressing force have a significant discrepancy between each other. It is proposed to use the actual pressure force coefficients instead of the calculated coefficients to assess the braking efficiency of the freight train. The paper presents the permissible values of the actual force values of pressing the pads on the wheels for wagons with axial load (230.5 - 294.3) kN at speeds up to 120 km/h inclusive, for which the braking distance criterion of the freight train is observed. Key words: criterion, braking efficiency, freight train, axial load, braking distance, specific braking force, calculated coefficients, actual coefficient.


2021 ◽  
Vol 904 ◽  
pp. 315-321
Author(s):  
Hao Cheng ◽  
Taeuk Lim ◽  
Won Suk Jung

This study presents the possibility of control of nanofluidics in the bio-inspired nanosized ion channel using a field effect transistor (FET) structure. We analyzed effects from main dominant factors to control the ion flow in nanosized channel such as electro-osmosis, diffusion effect, Coulomb force between ions and pressure force. Additionally, we suggest a strategy to control the ion flow accurately at the specific position in the nanochannel by handling the viscosity, ion molecular density, pressure, gate and trans-cis voltages of FET structure.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012090
Author(s):  
B R Borodin ◽  
F A Benimetskiy ◽  
P A Alekseev

Abstract In this work, we investigate mechanical scanning probe lithography (SPL) of thick MoSe2 flakes. The conventional technique faces difficulties in processing the thick samples due to cantilever twisting that leads to the growth of a number of defects and artifacts that decrease spatial resolution. In course of this work, we proposed the approach of frictional-SPL based on small pressure force and many repetitions of lithographic patterns. This approach allows to avoid the formation of remarkable defects and maintain high spatial resolution. By frictional-SPL, we processed thick MoSe2 flakes (up to 40 nm thick) with the highest resolution down to 20 nm. The results of this work show that frictional-SPL is an effective method of resistless lithography suitable for fabricating nanodevices based on transition metal dichalcogenides (TMDC) materials.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5844
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepieciński ◽  
Leon Kukiełka ◽  
Piotr Paszta ◽  
Paweł Maciąg ◽  
...  

The article presents the results of investigations into the depth of the plastically deformed surface layer in the roller burnishing process. The investigation was carried out in order to obtain information on the dependence relationship between the depth of plastic deformation, the pressure on the roller and the braking torque. The research was carried out according to the original method developed by the authors, in which the depth of plastic deformation is increased by applying a braking torque to the burnishing roller. In this method, it is possible to significantly increase (up to 20%) the depth of plastic deformation of the surface layer. The tests were carried out on a specially designed device on which the braking torque can be set and the force of the rolling resistance of the roller during burnishing can be measured. The tests were carried out on specimens made of C45 heat-treatable carbon steel. The dependence of the depth of the plastically deformed surface layer was determined for a given pressure force and variable braking moments. The depth of the plastically deformed layer was measured on the deformed end face of the ring-shaped samples. The microhardness in the sample cross-section and the evolution of the microstructure were both analysed.


Author(s):  
Mikhail Gurevich ◽  
Chaudhry Hassan ◽  
Brandon Denney ◽  
Yi-Xian Qin ◽  
James Penna ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
pp. 55-64
Author(s):  
LIVIU CONSTANTIN STAN

The paper aims to analyse the demands of four-stroke naval pistons. To begin with, a brief analysis of the evolution of shipbuilding was made. Mechanical requests are produced by the gas pressure force and inertial force of the alternate moving masses. Under its action the piston suffers an axial deformation. The thermal demands appearing in the engine are all the more important as the engine power is higher. The possibility of calculating them is more difficult due to the complexity of the thermogazodynamic phenomena in the engine cylinder. Thus, in the piston head, which comes in contact with both the hot gases and the fresh (much cooler) load, a non-stationary heat flow is installed which leads to a certain thermal regime of the engine. Considering the demands outlined in the last chapter, they lead to the final conclusion that although the most unfavourable loading situation was considered as the maximum pressure during the processes and even exaggerated in establishing the working conditions, the piston is still close to the elastic limit. This demonstrates that the way of calculating the dimensions of the piston is correct and safe, as long as its constructive dimensions are not oversized.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255948
Author(s):  
Haiping Yu ◽  
Ping Sun ◽  
Fazhi He ◽  
Zhihua Hu

Image segmentation is a fundamental task in image processing and is still a challenging problem when processing images with high noise, low resolution and intensity inhomogeneity. In this paper, a weighted region-based level set method, which is based on the techniques of local statistical theory, level set theory and curve evolution, is proposed. Specifically, a new weighted pressure force function (WPF) is first presented to flexibly drive the closed contour to shrink or expand outside and inside of the object. Second, a faster and smoother regularization term is added to ensure the stability of the curve evolution and that there is no need for initialization in curve evolution. Third, the WPF is integrated into the region-based level set framework to accelerate the speed of the curve evolution and improve the accuracy of image segmentation. Experimental results on medical and natural images demonstrate that the proposed segmentation model is more efficient and robust to noise than other state-of-the-art models.


Sign in / Sign up

Export Citation Format

Share Document