In-Time UAV Flight-Trajectory Estimation and Tracking Using Bayesian Filters

Author(s):  
Portia Banerjee ◽  
Matteo Corbetta
Author(s):  
Tomoyuki KOZUKA ◽  
Yoshikazu MIYAZAWA ◽  
Navinda Kithmal WICKRAMASINGHE ◽  
Mark BROWN ◽  
Yutaka FUKUDA

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Gabor Kovacs ◽  
Yasuharu Kunii ◽  
Takao Maeda ◽  
Hideki Hashimoto

Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


2018 ◽  
Vol 152 ◽  
pp. 22-34 ◽  
Author(s):  
Bin Yang ◽  
Jun Wang ◽  
Changshun Yuan ◽  
J. Thiyagalingam ◽  
T. Kirubarajan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document