Radio Resource Management Methods for Ultra-Reliable Low-Latency Communications in 5G LTE Narrowband Industrial Internet of Things

Author(s):  
Ruoxi Wang ◽  
Ivan Demydov ◽  
Orest Kochan ◽  
Olena Krasko ◽  
Mykola Beshley ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


2019 ◽  
Author(s):  
ALOKNATH DE

The vision of 5G is to connect multiple devices and provide meaningful services under a common rooftop, enabling the world populace to communicate to each other. It is estimated that industrial Internet of Things (IoT) alone will comprise of more than 25 billion devices by 2025 [1]-[2]. All these devices will broadly be cateogrized into three main streams of 5G principles: (1) enhanced Mobile Broadband (eMBB), (2) Ultra Reliable Low Latency Communications (URLLC) and (3) massive Machine-Type Communications (mMTC). They come with their own unique requirements that have to be adhered by the network.


Sign in / Sign up

Export Citation Format

Share Document