CRU-Net: A Deep Learning Network for Semantic Segmentation of Pathological Tissue Slices

Author(s):  
Yang Li
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2501 ◽  
Author(s):  
Yanan Song ◽  
Liang Gao ◽  
Xinyu Li ◽  
Weiming Shen

Deep learning is robust to the perturbation of a point cloud, which is an important data form in the Internet of Things. However, it cannot effectively capture the local information of the point cloud and recognize the fine-grained features of an object. Different levels of features in the deep learning network are integrated to obtain local information, but this strategy increases network complexity. This paper proposes an effective point cloud encoding method that facilitates the deep learning network to utilize the local information. An axis-aligned cube is used to search for a local region that represents the local information. All of the points in the local region are available to construct the feature representation of each point. These feature representations are then input to a deep learning network. Two well-known datasets, ModelNet40 shape classification benchmark and Stanford 3D Indoor Semantics Dataset, are used to test the performance of the proposed method. Compared with other methods with complicated structures, the proposed method with only a simple deep learning network, can achieve a higher accuracy in 3D object classification and semantic segmentation.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Yung-Hsien Hsieh ◽  
Fang-Rong Hsu ◽  
Seng-Tong Dai ◽  
Hsin-Ya Huang ◽  
Dar-Ren Chen ◽  
...  

In this study, we applied semantic segmentation using a fully convolutional deep learning network to identify characteristics of the Breast Imaging Reporting and Data System (BI-RADS) lexicon from breast ultrasound images to facilitate clinical malignancy tumor classification. Among 378 images (204 benign and 174 malignant images) from 189 patients (102 benign breast tumor patients and 87 malignant patients), we identified seven malignant characteristics related to the BI-RADS lexicon in breast ultrasound. The mean accuracy and mean IU of the semantic segmentation were 32.82% and 28.88, respectively. The weighted intersection over union was 85.35%, and the area under the curve was 89.47%, showing better performance than similar semantic segmentation networks, SegNet and U-Net, in the same dataset. Our results suggest that the utilization of a deep learning network in combination with the BI-RADS lexicon can be an important supplemental tool when using ultrasound to diagnose breast malignancy.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


Sign in / Sign up

Export Citation Format

Share Document