Realization of dexterous hand task by using multi-finger dual robot hand

Author(s):  
H. Sugiuchi ◽  
S. Watanabe ◽  
T. Morino
Keyword(s):  
Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1206-1224 ◽  
Author(s):  
P. Vulliez ◽  
J. P. Gazeau ◽  
P. Laguillaumie ◽  
H. Mnyusiwalla ◽  
P. Seguin

SUMMARYThis paper presents a novel tendon-driven bio-inspired robotic hand design for in-hand manipulation. Many dexterous robot hands are able to produce adaptive grasping, but only a few human-sized hands worldwide are able to produce fine motions of the object in the hand. One of the challenges for the near future is to develop human-sized robot hands with human dexterity. Most of the existing hands considered in the literature suffer from dry friction which creates unwanted backlash and non-linearities. These problems limit the accurate control of the fingers and the capabilities of the hand. Such was the case with our first fully actuated dexterous robot hand: the Laboratoire de Mécanique des Solides (LMS) hand.The mechanical design of the hand relies on a tendon-based transmission system. Developing a fully actuated dexterous robot hand requires the routing of the tendons through the finger for the actuation of each joint. This paper focuses on the evolution of the tendon routing; from the LMS hand to the new RoBioSS dexterous hand. The motion transmission in the new design creates purely linear coupling relations between joints and actuators. Experimental results using the same protocol for the previous hand and the new hand illustrate the evolution in the quality of the mechanical design. With the improvements of the mechanical behavior of the robotic fingers, the hand control software could be extensively simplified. The choice of a common architecture for all fingers makes it possible to consider the hand as a collaboration of four serial robots. Moreover, with the transparency of the motor-joint transmissions, we could use robust, industrial-grade cascaded feedback loops for the axis controls.An inside-hand manipulation task concerning the manipulation of a bottle cap is presented at the end of the paper. As proof of the robustness of the hand, demonstrations of the hand's capabilities were carried out continuously over three days at SPS IPC Drives international exhibition in Nuremberg, in November 2016.


Author(s):  
Lei Cui ◽  
Ugo Cupcic ◽  
Jian S. Dai

Mapping and calibration from a human hand to a robot hand pose a challenge due to their differences in kinematic structures. This paper uses the CyberGlove® as the input device for telemanipulating an object with the thumb and the index finger of the Shadow® Dexterous Hand™, with the focus not only on the position but also on the orientation of the thumb fingertip because it is found through experiments conducted on the Shadow Hand that the calibration of tip position alone can lead to unacceptable grasping postures. This paper develops an experiment protocol and proposes a nonlinear optimization formulation that makes the normals of the surfaces of the thumb and index fingertips within the friction cone while subject to fingertip position constraint. The results are verified to be accurate enough to conduct the telemanipulation.


2011 ◽  
Vol 338 ◽  
pp. 557-565 ◽  
Author(s):  
Wen Zhen Yang ◽  
Hua Zhang ◽  
Shi Guang Yu ◽  
Wen Hua Chen

Degrees of freedom (DOFs) and workspace are important factors to evaluate the flexibility of the dexterous hand. This paper develops an original dexterous hand, which has 20 active DOFs and adjustable thumb. Imitating the human hand bone structure, we design a full driven multi-fingered anthropomorphic robot hand (YWZ dexterous hand). For the thumb of YWZ dexterous hand, we innovatively design a metacarpal phalange mechanical structure to adjust thumb’s assembly position and radial orientation relative the palm. We construct coordinate systems to deduce the finger kinematic equations and analyze the finger workspace. A physical prototype of YWZ dexterous hand was manufactured to test its kinematic characteristics and workspace. Experimental results validate the YWZ dexterous hand has large workspace, excellent operating flexibility.


2012 ◽  
Vol 236-237 ◽  
pp. 1316-1320
Author(s):  
De Xue Bi ◽  
Hai Fei Long ◽  
Zhi Chao Sun

This paper presents a new design method of TUST dexterous hand. With cable based transmission scheme and implementation methods, and a new designed clutch device and finger cable-drive mechanism for second distribution of electrical power, the plan of using one motor to drive a robot hand with 21 Degrees of Freedom is fulfilled. Then the prototype is machined and manufactured, and the main design propose is verified.


2010 ◽  
Vol 1 (1) ◽  
pp. 27-32 ◽  
Author(s):  
D. Che ◽  
W. Zhang

Abstract. The concept called gesture-changeable under-actuated (GCUA) function is utilized to improve the dexterities of traditional under-actuated hands and reduce the control difficulties of dexterous hands. Based on GCUA function, a novel mechanical finger by multiple tendons: GCUA-T finger, is designed. The finger uses tendon mechanisms to achieve GCUA function which includes traditional underactuated (UA) grasping motion and special pre-bending (PB, or pre-shaping) motion before UA grasping. Operation principles and force analyses of the fingers are given, and the effect of GCUA function on the movements of a hand is discussed. The finger can satisfy the requirements of grasping and operating with low dependence on control system and low cost on manufacturing expenses, which develops a new way between dexterous hand and traditional under-actuated hand. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


Author(s):  
Hun-Keon Ko ◽  
Chang-Hee Cho ◽  
Hyo-Chan Kwon ◽  
Kwon-Hee Kim

Author(s):  
Satoshi Funabashi ◽  
Tomoki Isobe ◽  
Shun Ogasa ◽  
Tetsuya Ogata ◽  
Alexander Schmitz ◽  
...  
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document