Focus on the mechatronics design of a new dexterous robotic hand for inside hand manipulation

Robotica ◽  
2018 ◽  
Vol 36 (8) ◽  
pp. 1206-1224 ◽  
Author(s):  
P. Vulliez ◽  
J. P. Gazeau ◽  
P. Laguillaumie ◽  
H. Mnyusiwalla ◽  
P. Seguin

SUMMARYThis paper presents a novel tendon-driven bio-inspired robotic hand design for in-hand manipulation. Many dexterous robot hands are able to produce adaptive grasping, but only a few human-sized hands worldwide are able to produce fine motions of the object in the hand. One of the challenges for the near future is to develop human-sized robot hands with human dexterity. Most of the existing hands considered in the literature suffer from dry friction which creates unwanted backlash and non-linearities. These problems limit the accurate control of the fingers and the capabilities of the hand. Such was the case with our first fully actuated dexterous robot hand: the Laboratoire de Mécanique des Solides (LMS) hand.The mechanical design of the hand relies on a tendon-based transmission system. Developing a fully actuated dexterous robot hand requires the routing of the tendons through the finger for the actuation of each joint. This paper focuses on the evolution of the tendon routing; from the LMS hand to the new RoBioSS dexterous hand. The motion transmission in the new design creates purely linear coupling relations between joints and actuators. Experimental results using the same protocol for the previous hand and the new hand illustrate the evolution in the quality of the mechanical design. With the improvements of the mechanical behavior of the robotic fingers, the hand control software could be extensively simplified. The choice of a common architecture for all fingers makes it possible to consider the hand as a collaboration of four serial robots. Moreover, with the transparency of the motor-joint transmissions, we could use robust, industrial-grade cascaded feedback loops for the axis controls.An inside-hand manipulation task concerning the manipulation of a bottle cap is presented at the end of the paper. As proof of the robustness of the hand, demonstrations of the hand's capabilities were carried out continuously over three days at SPS IPC Drives international exhibition in Nuremberg, in November 2016.

1993 ◽  
Vol 2 (3) ◽  
pp. 203-220 ◽  
Author(s):  
Robert N. Rohling ◽  
John M. Hollerbach ◽  
Stephen C. Jacobsen

An optimized fingertip mapping (OFM) algorithm has been developed to transform human hand poses into robot hand poses. It has been implemented to teleoperate the Utah/MIT Dextrous Hand by a new hand master: the Utah Dextrous Hand Master. The keystone of the algorithm is the mapping of both the human fingertip positions and orientations to the robot fingers. Robot hand poses are generated by minimizing the errors between desired human fingertip positions and orientations and possible robot fingertip positions and orientations. Differences in the fingertip workspaces that arise from kinematic dissimilarities between the human and robot hands are accounted for by the use of a priority based mapping strategy. The OFM gives first priority to the human fingertip position goals and the second to orientation.


2008 ◽  
Vol 20 (4) ◽  
pp. 550-558 ◽  
Author(s):  
Kenta Tanaka ◽  
◽  
Yusuke Kamotani ◽  
Yasuyoshi Yokokohji

Dexterous manipulation by a robotic hand is a difficult problem involving (1) how to design a robot that gives the capability to achieve the task and (2) how to control the designed robot to actually conduct the task. In this paper, we take a task-oriented approach called “task capture” to construct a dexterous robot hand system. Before designing the robot, we analyze how a human being conducts the task, focusing on how the target object is manipulated rather than trying to imitate human finger movement. Based on the captured task, we design a robot that manipulates an object in the same way as a human being may do, with a mechanism as simple as possible, rather than concerning human appearance. As a target task, we choose origami paper folding. We first analyze the difficulty of origami manipulation and design a robotic mechanism that folds an origami form, the Tadpole, based on the proposed approach. The proof of how well the “task capture” approach works is demonstrated by a simple robot we developed, which folds a Tadpole consecutively.


2021 ◽  
Vol 6 (54) ◽  
pp. eabd2666
Author(s):  
Walter G. Bircher ◽  
Andrew S. Morgan ◽  
Aaron M. Dollar

Humans use all surfaces of the hand for contact-rich manipulation. Robot hands, in contrast, typically use only the fingertips, which can limit dexterity. In this work, we leveraged a potential energy–based whole-hand manipulation model, which does not depend on contact wrench modeling like traditional approaches, to design a robotic manipulator. Inspired by robotic caging grasps and the high levels of dexterity observed in human manipulation, a metric was developed and used in conjunction with the manipulation model to design a two-fingered dexterous hand, the Model W. This was accomplished by simulating all planar finger topologies composed of open kinematic chains of up to three serial revolute and prismatic joints, forming symmetric two-fingered hands, and evaluating their performance according to the metric. We present the best design, an unconventional robot hand capable of performing continuous object reorientation, as well as repeatedly alternating between power and pinch grasps—two contact-rich skills that have often eluded robotic hands—and we experimentally characterize the hand’s manipulation capability. This hand realizes manipulation motions reminiscent of thumb–index finger manipulative movement in humans, and its topology provides the foundation for a general-purpose dexterous robot hand.


2011 ◽  
Vol 23 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Jun-Ya Nagase ◽  
Norihiko Saga ◽  
Toshiyuki Satoh ◽  
Koichi Suzumori

Because of the rapid aging of the Japanese population and the acute decrease in young workers in Japan, robots are anticipated for use in performing rehabilitation and daily domestic tasks for nursing and welfare services. Use in environments with humans, safety, and human affinity are particularly important robot hand characteristics. Such robot hands must have flexible movements and be lightweight. Under these circumstances, this study specifically addresses the expansion of a silicone rubber, tendon-driven actuator, which has been developed using a pneumatic balloon. A multifingered robotic hand using the actuator is developed. Moreover, a fuzzy grasping control system is applied to the proposed robotic hand. The robot hand’s development is described incorporating pneumatic balloon actuator with the softness, size, and weight of a human hand. The fuzzy grasping control system is shown to be effective for the proposed robot hand, which can grasp soft objects easily.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


2021 ◽  
Author(s):  
Zhe Liu ◽  
Zeyi Zhang ◽  
Weihong Liu ◽  
Guozhen Huang ◽  
Yongkang Jiang ◽  
...  

Abstract Dexterous hand, as robot end effecter, is gradually showing unparalleled potential. In this paper, we proposed a novel configuration for the movement of the robot thumb metacarpal joint. Then, the force transfer efficiency of the finger structure is analyzed to reduce the demand for motor torque and realize the integration of ten motors inside the palm. Additionally, With the help of a soft-rigid hybrid palm, the contact area of the grasping object and the load capacity has increased considerably. Finally, the integrated verification is carried out on the home-made service robot, which can obtain reliable grasping of objects of various shapes and different surface features. What’s more, the robotic hand flexibly operates the infrared thermometer to measure the temperature of the water in the cup which shows a great application prospect in the field of service and industry.


2009 ◽  
Vol 419-420 ◽  
pp. 645-648 ◽  
Author(s):  
Qun Ming Li ◽  
Dan Gao ◽  
Hua Deng

Different from dexterous robotic hands, the gripper of heavy forging manipulator is an underconstrained mechanism whose tongs are free in a small wiggling range. However, for both a dexterous robotic hand and a heavy gripper, the force closure condition: the force and the torque equilibrium, must be satisfied without exception to maintain the grasping/gripping stability. This paper presents a gripping model for the heavy forging gripper with equivalent friction points, which is similar to a grasp model of multifingered robot hands including four contact points. A gripping force optimization method is proposed for the calculation of contact forces between gripper tongs and forged object. The comparison between the calculation results and the experimental results demonstrates the effectiveness of the proposed calculation method.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


Sign in / Sign up

Export Citation Format

Share Document