A weakly-supervised factorization method with dynamic graph embedding

Author(s):  
Seyed Amjad Seyedi ◽  
Parham Moradi ◽  
Fardin Akhlaghian Tab
2023 ◽  
Vol 55 (1) ◽  
pp. 1-37
Author(s):  
Claudio D. T. Barros ◽  
Matheus R. F. Mendonça ◽  
Alex B. Vieira ◽  
Artur Ziviani

Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics and inference, supporting applications like node classification, link prediction, and graph visualization. However, many real-world networks present dynamic behavior, including topological evolution, feature evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been proposed to learn network representations over time, facing novel challenges, such as time-domain modeling, temporal features to be captured, and the temporal granularity to be embedded. In this survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the problem setting and introducing a novel taxonomy for dynamic graph embedding input and output. We further explore different dynamic behaviors that may be encompassed by embeddings, classifying by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point processes. We also elucidate main applications, including dynamic link prediction, anomaly detection, and diffusion prediction, and we further state some promising research directions in the area.


Author(s):  
Sujit Rokka Chhetri ◽  
Mohammad Abdullah Al Faruque

2021 ◽  
Vol 11 (13) ◽  
pp. 5861
Author(s):  
Gen Li ◽  
Tri-Hai Nguyen ◽  
Jason J. Jung

With a large of time series dataset from the Internet of Things in Ambient Intelligence-enabled smart environments, many supervised learning-based anomaly detection methods have been investigated but ignored the correlation among the time series. To address this issue, we present a new idea for anomaly detection based on dynamic graph embedding, in which the dynamic graph comprises the multiple time series and their correlation in each time interval. We propose an entropy for measuring a graph’s information injunction with a correlation matrix to define similarity between graphs. A dynamic graph embedding model based on the graph similarity is proposed to cluster the graphs for anomaly detection. We implement the proposed model in vehicular edge computing for traffic incident detection. The experiments are carried out using traffic data produced by the Simulation of Urban Mobility framework. The experimental findings reveal that the proposed method achieves better results than the baselines by 14.5% and 18.1% on average with respect to F1-score and accuracy, respectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247119
Author(s):  
Gen Li ◽  
Jason J. Jung

Existing dynamic graph embedding-based outlier detection methods mainly focus on the evolution of graphs and ignore the similarities among them. To overcome this limitation for the effective detection of abnormal climatic events from meteorological time series, we proposed a dynamic graph embedding model based on graph proximity, called DynGPE. Climatic events are represented as a graph where each vertex indicates meteorological data and each edge indicates a spurious relationship between two meteorological time series that are not causally related. The graph proximity is described as the distance between two graphs. DynGPE can cluster similar climatic events in the embedding space. Abnormal climatic events are distant from most of the other events and can be detected using outlier detection methods. We conducted experiments by applying three outlier detection methods (i.e., isolation forest, local outlier factor, and box plot) to real meteorological data. The results showed that DynGPE achieves better results than the baseline by 44.3% on average in terms of the F-measure. Isolation forest provides the best performance and stability. It achieved higher results than the local outlier factor and box plot methods, namely, by 15.4% and 78.9% on average, respectively.


Author(s):  
Shima Khoshraftar ◽  
Sedigheh Mahdavi ◽  
Aijun An ◽  
Yonggang Hu ◽  
Junfeng Liu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gen Li ◽  
Jason J. Jung

AbstractAbnormal climate event is that some meteorological conditions are extreme in a certain time interval. The existing methods for detecting abnormal climate events utilize supervised learning models to learn the abnormal patterns, but they cannot detect the untrained patterns. To overcome this problem, we construct a dynamic graph by discovering the correlation among the climate time series and propose a novel dynamic graph embedding model based on graph entropy called EDynGE to discriminate anomalies. The graph entropy measurement quantifies the information of the graphs and constructs the embedding space. We conducted experiments on synthetic datasets and real-world meteorological datasets. The results showed that EdynGE model achieved a better F1-score than the baselines by 43.2%, and the number of days of abnormal climate events has increased by 304.5 days in the past 30 years.


Sign in / Sign up

Export Citation Format

Share Document