A two-stage Monte Carlo approach to the expression of uncertainty with finite sample sizes

Author(s):  
S.V. Crowder ◽  
R.D. Moyer
Author(s):  
Rossen Mikhov ◽  
Vladimir Myasnichenko ◽  
Leoneed Kirilov ◽  
Nickolay Sdobnyakov ◽  
Pavel Matrenin ◽  
...  

Author(s):  
Rossen Mikhov ◽  
Vladimir Myasnichenko ◽  
Leoneed Kirilov ◽  
Nickolay Sdobnyakov ◽  
Pavel Matrenin ◽  
...  

2006 ◽  
Vol 54 (3) ◽  
pp. 343-350 ◽  
Author(s):  
C. F. H. Longin ◽  
H. F. Utz ◽  
A. E. Melchinger ◽  
J.C. Reif

The optimum allocation of breeding resources is crucial for the efficiency of breeding programmes. The objectives were to (i) compare selection gain ΔGk for finite and infinite sample sizes, (ii) compare ΔGk and the probability of identifying superior hybrids (Pk), and (iii) determine the optimum allocation of the number of hybrids and test locations in hybrid maize breeding using doubled haploids. Infinite compared to finite sample sizes led to almost identical optimum allocation of test resources, but to an inflation of ΔGk. This inflation decreased as the budget and the number of finally selected hybrids increased. A reasonable Pk was reached for hybrids belonging to the q = 1% best of the population. The optimum allocations for Pk(q) and ΔGkwere similar, indicating that Pk(q) is promising for optimizing breeding programmes.


2009 ◽  
Vol 8 (3-4) ◽  
pp. 324-335 ◽  
Author(s):  
Damien Querlioz ◽  
Huu-Nha Nguyen ◽  
Jérôme Saint-Martin ◽  
Arnaud Bournel ◽  
Sylvie Galdin-Retailleau ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adriaan M. H. van der Veen ◽  
Juris Meija ◽  
Antonio Possolo ◽  
David Brynn Hibbert

Abstract Many calculations for science or trade require the evaluation and propagation of measurement uncertainty. Although relative atomic masses (standard atomic weights) of elements in normal terrestrial materials and chemicals are widely used in science, the uncertainties associated with these values are not well understood. In this technical report, guidelines for the use of standard atomic weights are given. This use involves the derivation of a value and a standard uncertainty from a standard atomic weight, which is explained in accordance with the requirements of the Guide to the Expression of Uncertainty in Measurement. Both the use of standard atomic weights with the law of propagation of uncertainty and the Monte Carlo method are described. Furthermore, methods are provided for calculating uncertainties of relative molecular masses of substances and their mixtures. Methods are also outlined to compute material-specific atomic weights whose associated uncertainty may be smaller than the uncertainty associated with the standard atomic weights.


Sign in / Sign up

Export Citation Format

Share Document