Bittor approach to the representation and propagation of uncertainty in measurements

Author(s):  
F. Ponci ◽  
J.E. Johnson
2013 ◽  
Author(s):  
Daniel Kammer ◽  
Sonny Nimityongskul ◽  
Dimitri Kratiger

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adriaan M. H. van der Veen ◽  
Juris Meija ◽  
Antonio Possolo ◽  
David Brynn Hibbert

Abstract Many calculations for science or trade require the evaluation and propagation of measurement uncertainty. Although relative atomic masses (standard atomic weights) of elements in normal terrestrial materials and chemicals are widely used in science, the uncertainties associated with these values are not well understood. In this technical report, guidelines for the use of standard atomic weights are given. This use involves the derivation of a value and a standard uncertainty from a standard atomic weight, which is explained in accordance with the requirements of the Guide to the Expression of Uncertainty in Measurement. Both the use of standard atomic weights with the law of propagation of uncertainty and the Monte Carlo method are described. Furthermore, methods are provided for calculating uncertainties of relative molecular masses of substances and their mixtures. Methods are also outlined to compute material-specific atomic weights whose associated uncertainty may be smaller than the uncertainty associated with the standard atomic weights.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Ahmet Yildirim ◽  
Mohammad Mehdi Ghahremanpour ◽  
David van der Spoel

2016 ◽  
Vol 121 (5) ◽  
pp. 3488-3501 ◽  
Author(s):  
Shitao Wang ◽  
Mohamed Iskandarani ◽  
Ashwanth Srinivasan ◽  
W. Carlisle Thacker ◽  
Justin Winokur ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2277 ◽  
Author(s):  
Omar M. Nofal ◽  
John W. van de Lindt

Current flood vulnerability analyses rely on deterministic methods (e.g., stage–damage functions) to quantify resulting damage and losses to the built environment. While such approaches have been used extensively by communities, they do not enable the propagation of uncertainty into a risk- or resilience-informed decision process. In this paper, a method that allows the development of building fragility and building loss functions is articulated and applied to develop an archetype portfolio that can be used to model buildings in a typical community. The typical single-variable flood vulnerability function, normally based on flood depth, is extended to a multi-variate flood vulnerability function, which is a function of both flood depth and flood duration, thereby creating fragility surfaces. The portfolio presented herein consists of 15 building archetypes that can serve to populate a community-level model to predict damage and resulting functionality from a scenario flood event. The prediction of damage and functionality of buildings within a community is the first step in developing risk-informed mitigation decisions to improve community resilience.


2018 ◽  
Vol 49 (1) ◽  
pp. 147-168 ◽  
Author(s):  
M. Sánchez-Sánchez ◽  
M.A. Sordo ◽  
A. Suárez-Llorens ◽  
E. Gómez-Déniz

AbstractWe study the propagation of uncertainty from a class of priors introduced by Arias-Nicolás et al. [(2016) Bayesian Analysis, 11(4), 1107–1136] to the premiums (both the collective and the Bayesian), for a wide family of premium principles (specifically, those that preserve the likelihood ratio order). The class under study reflects the prior uncertainty using distortion functions and fulfills some desirable requirements: elicitation is easy, the prior uncertainty can be measured by different metrics, and the range of quantities of interest is easily obtained from the extremal members of the class. We illustrate the methodology with several examples based on different claim counts models.


Sign in / Sign up

Export Citation Format

Share Document