damage functions
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 61)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Pauline Brémond ◽  
Anne-Laurence Agenais ◽  
Frédéric Grelot ◽  
Claire Richert

Abstract. Flood damage assessment is crucial for evaluating flood management policies. In particular, properly assessing damage to the agricultural assets is important because they may have greater exposure and are complex economic systems. The modelling approaches used to assess flood damage are of several types and can be fed by damage data collected post-flood, from experiments or based on expert knowledge. The process-based models fed by expert knowledge are subject of research and also widely used in an operational way. Although identified as potentially transferable, they are in reality often case-specific and difficult to reuse in time (updatbililty) and space (transferability). In this paper, we argue that process-based models are not doomed to be context specific as far as the modelling process is rigorous. We propose a methodological framework aiming at verifying the conditions necessary to develop these models in a spirit of capitalisation by relying on four axes which are: i/ the explicitation of assumptions, ii/ the validation, iii/ the updatability, iv/ the transferability. The methodological framework is then applied to the model we have developed in France to produce national damage functions for the agricultural sector. We show in this paper that the proposed methodological framework allows an explicit description of the modelling assumptions and data used, which is necessary to consider a reuse in time or a transfer to another geographical area. We also highlight that despite the lack of feedback data on post-flood damages, the proposed methodological framework is a solid basis to consider the validation, transfer, comparison and capitalisation of data collected around process-based models relying on expert knowledge. In conclusion, we identify research tracks to be implemented to pursue this improvement in a spirit of capitalisation and international cooperation.


2021 ◽  
Author(s):  
Anna Rita Scorzini ◽  
Benjamin Dewals ◽  
Daniela Rodriguez Castro ◽  
Pierre Archambeau ◽  
Daniela Molinari

Abstract. The spatial transfer of flood damage models among regions and countries is a challenging but unavoidable approach, for performing flood risk assessments in data and model scarce regions. In these cases, similarities and differences between the contexts of application should be considered to obtain reliable damage estimations and, in some cases, the adaptation of the original model to the new conditions is required. This study exemplifies a replicable procedure for the adaptation to the Belgian context of a multi-variable, synthetic flood damage model for the residential sector originally developed for Italy (INSYDE). The study illustrates necessary amendments in model assumptions, especially regarding input default values for the hazard and building parameters and damage functions describing the modelled damage mechanisms.


2021 ◽  
Author(s):  
Fatemeh Yavari ◽  
Seyyed Ali Akbar Salehi Neyshabouri ◽  
Jafar Yazdi ◽  
amir molajou

Abstract The study of non-stationary effects of hydrological time series and land-use changes in urban areas is essential to predict future floods and their probable damage. In the current study, a novel method was proposed for analyzing their simultaneous impact. For this purpose, rainfall frequency and land-use changes analyses were conducted for two different long-term periods, and the results were compared. Then, hydrologic modeling of the catchment was carried out using the HEC-HMS model, and obtained hydrographs were fed to the HEC-RAS2D model for estimating flood inundation areas. Using the economic information of assets and their damage functions, flood damages related to these two periods were evaluated through the HEC-FIA model. The results indicated that in the low return periods (e.g., 2-year flood), the damage in the second period was increased with respect to the first one but increased for the return periods of 5 to 100 years. Furthermore, surface runoff showed a 4.65% increase due to land-use change and a 12% increase due to rainfall non-stationarity. Moreover, flood damage showed a 136% increase on average, and among the two studied factors, the non-stationarity of rainfalls is considerably more effective on flood intensification.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Daniel Bressler ◽  
Frances C. Moore ◽  
Kevin Rennert ◽  
David Anthoff

AbstractMany studies project that climate change is expected to cause a significant number of excess deaths. Yet, in integrated assessment models that determine the social cost of carbon (SCC), human mortality impacts do not reflect the latest scientific understanding. We address this issue by estimating country-level mortality damage functions for temperature-related mortality with global spatial coverage. We rely on projections from the most comprehensive published study in the epidemiology literature of future temperature impacts on mortality (Gasparrini et al. in Lancet Planet Health 1:e360–e367, 2017), which estimated changes in heat- and cold-related mortality for 23 countries over the twenty-first century. We model variation in these mortality projections as a function of baseline climate, future temperature change, and income variables and then project future changes in mortality for every country. We find significant spatial heterogeneity in projected mortality impacts, with hotter and poorer places more adversely affected than colder and richer places. In the absence of income-based adaptation, the global mortality rate in 2080–2099 is expected to increase by 1.8% [95% CI 0.8–2.8%] under a lower-emissions RCP 4.5 scenario and by 6.2% [95% CI 2.5–10.0%] in the very high-emissions RCP 8.5 scenario relative to 2001–2020. When the reduced sensitivity to heat associated with rising incomes, such as greater ability to invest in air conditioning, is accounted for, the expected end-of-century increase in the global mortality rate is 1.1% [95% CI 0.4–1.9%] in RCP 4.5 and 4.2% [95% CI 1.8–6.7%] in RCP 8.5. In addition, we compare recent estimates of climate-change induced excess mortality from diarrheal disease, malaria and dengue fever in 2030 and 2050 with current estimates used in SCC calculations and show these are likely underestimated in current SCC estimates, but are also small compared to more direct temperature effects.


2021 ◽  
Author(s):  
RUI MIRANDA GUEDES

How to predict the residual strength of polymer matrix composites (PMCs) after a fatigue cycle at multiple stress levels, based on the fatigue or Wöhler (S-N) curves, remains unsatisfactorily tackled. The Miner’s Rule is a widespread example of a simple way to account for damage accumulation under different fatigue cycles. Under certain combinations of stress levels, Miner’s Rule accurately predicts the lifetime of PMCs, but it fails in other cases. The reason is the simple assumption of linear cumulative damage, not accounting for sequence effects in the loading history. Several researchers have proposed modifications to Miner’s Rule. However, due to its simplicity, Miner’s Rule is still used by structural designers. Recent research work proposed compatibility conditions for fatigue damage functions in the S–N plane, leading to a simple model that fulfils those conditions contrary to the previous models, the Miner’s Rule and the Broutman and Sahu linear model. These models predict fatigue life at variable amplitude loading based on constant amplitude fatigue data. Forcibly, the analytical form of SıN influences the model lifetime predictions. Experimental data obtained in the literature serves to illustrate the models' predictions at different loading conditions. Although this work focused on composite materials, we foresaw extension to other materials.


2021 ◽  
Author(s):  
Manuel Andres Diaz Loaiza ◽  
Jeremy D. Bricker ◽  
Remi Meynadier ◽  
Trang Duong ◽  
Rosh Ranasinghe ◽  
...  

Abstract. The Delft3D hydrodynamic and wave model is used to hindcast the storm surge and waves that impacted La Rochelle, France and the surrounding area (Aytré, Châtelaillon-Plage, Yves, Fouras and Ille du Re) during Storm Xynthia. These models are validated against tide and wave measurements. The models then estimate the footprint of flow depth, speed, unit discharge, flow momentum flux, significant wave height, wave energy flux, total water depth (flow depth plus wave height), and total (flow plus wave) force at the locations of damaged buildings for which insurance claims data are available. Correlation of the hydrodynamic and wave results with the claims data generates building damage functions. These damage functions are shown to be sensitive to the topography data used in the simulation, as well as the hydrodynamic or wave forcing parameter chosen for the correlation. The most robust damage functions result from highly accurate topographic data, and are correlated with water depth or total (flow plus wave) force.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 633
Author(s):  
Frank Kwabena Afriyie Nyarko ◽  
Gabriel Takyi ◽  
Anthony Agyei Agyemang ◽  
Charles Kofi Kafui Sekyere

c-Si solar cell interconnection damages from thermal cycles emanate from cumulative damage contributions from the various load steps in a typical thermal cycle. In general, a typical thermal cycle involves five thermal load steps, namely: 1st cold dwell, ramp-up, hot dwell, ramp-down, and 2nd cold dwell. To predict the contributions of each of these load steps to creep damage in soldered interconnections, each of the respective load steps needs to be profiled to accurately fit a function capable of predicting the damage contributions from a given number of thermal cycles. In this study, a field thermal cycle profile generated from in situ thermal cyclings at a test site in Kumasi, a hot humid region of sub-Saharan Africa, is used to predict damage in solar cell interconnections from accumulated creep energy density using finite element analysis (FEA). The damage was assessed for two different solder formulations, namely: Pb60Sn40 and Sn3.8Ag0.7Cu (lead-free). The results from the FEA simulations show that the cooling (ramp-down) load steps accounted for the highest accumulated creep energy density (ACED) damage in solder interconnections. The ramp-up load steps followed this closely. The cumulative contributions of the two load steps accounted for 78% and 88% of the total damage per cycle in the Pb60Sn40 and Sn3.8Ag0.7Cu solder interconnections, respectively. Furthermore, a study of the damage profiles from each of the five load steps revealed that each of the damage functions from the various load steps is a step function involving the first two thermal cycles, on one hand, and the remaining 10 thermal cycles on the other hand. The damage from the first two thermal cycles can be predicted from a logarithmic function, whereas the damage from the remaining 10 thermal cycles is predicted using six-order polynomial functions. The ACED results computed from the damage functions are in close agreement with the results from the FEA simulation. The functions generated provide useful relations for the prediction of the life (number of cycles to failure) of solder interconnections in solar cells. The systematic approach used in this study can be repeated for other test sites to generate damage functions for the prediction of the life of c-Si PV cells with SnPb and lead-free solder interconnections.


Author(s):  
L. Moratto ◽  
A. Vuan ◽  
A. Saraò ◽  
D. Slejko ◽  
C. Papazachos ◽  
...  

AbstractTo ensure environmental and public safety, critical facilities require rigorous seismic hazard analysis to define seismic input for their design. We consider the case of the Trans Adriatic Pipeline (TAP), which is a pipeline that transports natural gas from the Caspian Sea to southern Italy, crossing active faults and areas characterized by high seismicity levels. For this pipeline, we develop a Probabilistic Seismic Hazard Assessment (PSHA) for the broader area, and, for the selected critical sites, we perform deterministic seismic hazard assessment (DSHA), by calculating shaking scenarios that account for the physics of the source, propagation, and site effects. This paper presents a DSHA for a compressor station located at Fier, along the Albanian coastal region. Considering the location of the most hazardous faults in the study site, revealed by the PSHA disaggregation, we model the ground motion for two different scenarios to simulate the worst-case scenario for this compressor station. We compute broadband waveforms for receivers on soft soils by applying specific transfer functions estimated from the available geotechnical data for the Fier area. The simulations reproduce the variability observed in the ground motion recorded in the near-earthquake source. The vertical ground motion is strong for receivers placed above the rupture areas and should not be ignored in seismic designs; furthermore, our vertical simulations reproduce the displacement and the static offset of the ground motion highlighted in recent studies. This observation confirms the importance of the DSHA analysis in defining the expected pipeline damage functions and permanent soil deformations.


Sign in / Sign up

Export Citation Format

Share Document