scholarly journals A Service-Agnostic Software Framework for Fast and Efficient in-Kernel Network Services

Author(s):  
Sebastiano Miano ◽  
Matteo Bertrone ◽  
Fulvio Risso ◽  
Mauricio Vasquez Bernal ◽  
Yunsong Lu ◽  
...  
2017 ◽  
Vol 2 (2) ◽  
pp. 470-478
Author(s):  
Emad H. Al-Hemiary
Keyword(s):  

Author(s):  
Da-Yin Liao

Contemporary 300mm semiconductor manufacturing systems have highly automated and digitalized cyber-physical integration. They suffer from the profound problems of integrating large, centralized legacy systems with small islands of automation. With the recent advances in disruptive technologies, semiconductor manufacturing has faced dramatic pressures to reengineer its automation and computer integrated systems. This paper proposes a Distributed-Ledger, Edge-Computing Architecture (DLECA) for automation and computer integration in semiconductor manufacturing. Based on distributed ledger and edge computing technologies, DLECA establishes a decentralized software framework where manufacturing data are stored in distributed ledgers and processed locally by executing smart contracts at the edge nodes. We adopt an important topic of automation and computer integration for semiconductor research &development (R&D) operations as the study vehicle to illustrate the operational structure and functionality, applications, and feasibility of the proposed DLECA software framework.


2009 ◽  
Vol 29 (9) ◽  
pp. 2541-2545
Author(s):  
Wen HAO ◽  
Ling-mei AI ◽  
Ying-hui WANG

2021 ◽  
pp. 101412
Author(s):  
Vitor A. Cunha ◽  
Daniel Corujo ◽  
Joao P. Barraca ◽  
Rui L. Aguiar

Author(s):  
Jordan Musser ◽  
Ann S Almgren ◽  
William D Fullmer ◽  
Oscar Antepara ◽  
John B Bell ◽  
...  

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the CFD-DEM expertise embodied in the MFIX code—which was developed at NETL and is used widely in academia and industry—with the modern software framework, AMReX, developed at LBNL. The fundamental physics models follow those of the original MFIX, but the combination of new algorithmic approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines to optimize the modeling and design of multiphase chemical reactors.


Sign in / Sign up

Export Citation Format

Share Document