A Self-tuning PID Controller Design based on Fuzzy Logic for Nonlinear Chemical Processes

Author(s):  
Yohn Garcia
2016 ◽  
Vol 78 (6-13) ◽  
Author(s):  
Ali Dehghani ◽  
Hamed Khodadadi

Although flexible joint robots are widely used in the industry, they are not without problems. It is especially so in their joints, links and complex dynamic where the interaction between loops, non-linearity, and flexibility in the joints can be difficult. The purpose of the present paper is to improve the tracking performance of flexible joint robots. Therefore the physical relations of the system dynamics need to be used to determine a non-linear model for the flexible joint robot. This paper attempts to achieve the desired performance flexible joint robot based on Fuzzy Logic Self-Tuning PID controller. Generally, the classic PID controller is different from the newly introduced form of PID. In classic PID, the parameter values are calculated based on various methods such as Ziegler-Nichols, while in fuzzy logic self-tuning PID, they are obtained by intelligent methods such as fuzzy logic. After deriving the system model, this logic self-tuning PID controller is designed in two cases: using error and its derivative and employing error and its integral for the inputs. The simulation results indicate that the proposed controllers can improve the overall efficiency of the system.


2014 ◽  
Vol 898 ◽  
pp. 755-758 ◽  
Author(s):  
Wei Li ◽  
Jian Fang

Establish the attitude model for self-designed mobile robot, According to the characteristics of nonlinear, unstable, using BP neural network method to achieve self-tuning PID parameters to make optimal parameters of the PID controller. Stabilization control of two-wheeled self-balanced robots at the same time, decrease the overshoot of the system and the number of shocks. Simulation experiments show that: Using BP neural network self-tuning PID controller improves system stability, effectiveness has been well controlled, with high practical value


Sign in / Sign up

Export Citation Format

Share Document