Improving the image recognition capability of Hopfield neural networks

Author(s):  
M.C. Humphrey ◽  
G. Holmes ◽  
S.J. Cunningham
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ibragim Suleimenov ◽  
Grigoriy Mun ◽  
Sergey Panchenko ◽  
Ivan Pak

AbstractThere were implemented samples of asymmetric Hopfield neural networks which have finite time of transition from one state to another. It was shown that in such systems, various oscillation modes could occur. It was revealed that the oscillation of the output signal of certain neuron could be treated as extra logical variable, which describes the state of the neuron. Asymmetric Hopfield neural networks are described in terms of ternary logic. Such logic may be employed in image recognition procedure.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yutian Zhang ◽  
Guici Chen ◽  
Qi Luo

AbstractIn this paper, the pth moment exponential stability for a class of impulsive delayed Hopfield neural networks is investigated. Some concise algebraic criteria are provided by a new method concerned with impulsive integral inequalities. Our discussion neither requires a complicated Lyapunov function nor the differentiability of the delay function. In addition, we also summarize a new result on the exponential stability of a class of impulsive integral inequalities. Finally, one example is given to illustrate the effectiveness of the obtained results.


1995 ◽  
Vol 50 (8) ◽  
pp. 718-726 ◽  
Author(s):  
Scott Rader ◽  
Diek W. Wheeler ◽  
W.C. Schieve ◽  
Pranab Das

Abstract Hübler's technique using aperiodic forces to drive nonlinear oscillators to resonance is analyzed. The oscillators being examined are effective neurons that model Hopfield neural networks. The method is shown to be valid under several different circumstances. It is verified through analysis of the power spectrum, force, resonance, and energy transfer of the system.


Sign in / Sign up

Export Citation Format

Share Document