Post-Filtering with Multichannel Power Spectral Estimation Using Joint Diagonalization in Multi-Speaker Environments

Author(s):  
Hai Dam ◽  
Sven Nordholm ◽  
Hai Dam ◽  
Siow Low
1997 ◽  
Vol 36 (04/05) ◽  
pp. 41-46
Author(s):  
A. Kjaer ◽  
W. Jensen ◽  
T. Dyrby ◽  
L. Andreasen ◽  
J. Andersen ◽  
...  

Abstract.A new method for sleep-stage classification using a causal probabilistic network as automatic classifier has been implemented and validated. The system uses features from the primary sleep signals from the brain (EEG) and the eyes (AOG) as input. From the EEG, features are derived containing spectral information which is used to classify power in the classical spectral bands, sleep spindles and K-complexes. From AOG, information on rapid eye movements is derived. Features are extracted every 2 seconds. The CPN-based sleep classifier was implemented using the HUGIN system, an application tool to handle causal probabilistic networks. The results obtained using different training approaches show agreements ranging from 68.7 to 70.7% between the system and the two experts when a pooled agreement is computed over the six subjects. As a comparison, the interrater agreement between the two experts was found to be 71.4%, measured also over the six subjects.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mozamel Musa Saeed ◽  
Mohammed Alsharidah

AbstractBoth software-defined networking and big data have gained approval and preferences from both industry and academia. These two important realms have conventionally been addressed independently in wireless cellular networks. The discussion taken into consideration in this study was to analyze the wireless cellular technologies with the contrast of efficient and enhanced spectral densities at a reduced cost. To accomplish the goal of this study, Welch's method has been used as the core subject. With the aid of previous research and classical techniques, this study has identified that the spectral densities can be enhanced at reduced costs with the help of the power spectral estimation methods. The Welch method gives the result on power spectrum estimation. By reducing the effect of noise, the Welch method is used to calculate the power spectral density of a signal. When data length is increased, Welch's method is considered the best as a conclusion to this paper because excellent results are yielded by it in the area of power spectral density estimation.


Author(s):  
Poonam Bansal ◽  
Amita Dev ◽  
Shail Jain

In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses only the higher-order autocorrelation coefficients for spectral estimation. The magnitude spectrum of the windowed higher-order autocorrelation sequence is used here as an estimate of the power spectrum of the speech signal. This power spectral estimate is processed further by the Mel filter bank; a log operation and the discrete cosine transform to get the cepstral coefficients. These cepstral coefficients are referred to as the Differentiated Relative Higher Order Autocorrelation Coefficient Sequence Spectrum (DRHOASS). The authors evaluate the speech recognition performance of the DRHOASS features and show that they perform as well as the MFCC features for clean speech and their recognition performance is better than the MFCC features for noisy speech.


Author(s):  
Kantipudi MVV Prasad ◽  
H.N. Suresh

There are various applications on signal processing that is highly dependent on preciseness and accuracy of the outcomes in spectrum of signals. Hence, from the past two decades the research community has recognized the benefits, significance, as well as associated problems in carrying out a model for spectral estimation. While in-depth investigation of the existing literatures shows that there are various attempts by the researchers to solve the issues associated with spectral estimations, where majority of teh research work is inclined towards addressing problems associated with Capon and APES techniques of spectral analysis. Therefore, this paper introduces a very simple technique towards resolving the issues of Capon and APES techniques. The outcome of the study was analyzed using correlational factor and power spectral density to find the proposed system offers better spectral estimations compared to existing system.


2018 ◽  
Vol 7 (2.25) ◽  
pp. 10
Author(s):  
Bincy Babu ◽  
R Chandrasekaran ◽  
Josline Elsa Joseph ◽  
Thella Shalem Rahul ◽  
T R Thamizhvani ◽  
...  

Almost every Brain Control Interfcae (BCI) system is framed based on Steady State Visual Evoked Potential (SSVEP) which is predicted through distinguishing overriding frequency components in Electroencephalography (EEG) signals. The proposed system aims in accurate feature extraction of SSVEP signals. Power spectral analysis and wavelet analysis are done for feature analysis. The feature set variation for male and female subjects are obtained. Compared power spectral estimation and wavelet analysis, merits and demerits of each approach can be identified from the outcomes. It offers a theoretical reference of practical choice for BCI application.  


2014 ◽  
Vol 573 ◽  
pp. 848-855
Author(s):  
R. Sukanesh ◽  
E. Muthu Kumaran

.The nasal cycle is referred to a cyclic fluctuation in congestion of the nasal mucosa that results in rhythmic and bilateral reciprocal alteration of nasal airway patency. The purpose of this study is to deal with statistical and power spectral analysis of nasal cycle by measuring the temperature difference between the airflow of both left and right nostrils. Five adult voluntary healthy subjects are enrolled for the study. Nasal temperature probe combined with amplifier are used for recording nasal airflow temperature on both nostrils. The highest nasal airflow temperature values are detected at the end of expiration and the lowest values are detected at the end of inspiration. Nasal cycle found in all the subjects and lasted to the minimum of 30 minutes to maximum of 6 hours. The difference in temperature of both nostrils is statistically significant (p<0.05) and spectral estimation is made using autoregressive modeling. The method is used to quantify nasal obstruction in pathological condition and also to correlate the related physiological phenomenon.


1969 ◽  
Vol 57 (1) ◽  
pp. 79-82 ◽  
Author(s):  
D.W. Tufts ◽  
W. Knight ◽  
D. Rorabacher

2020 ◽  
Vol 45 (2) ◽  
pp. 489-499 ◽  
Author(s):  
Wei Guo ◽  
Shengchun Piao ◽  
T. C. Yang ◽  
Junyuan Guo ◽  
Kashif Iqbal

Sign in / Sign up

Export Citation Format

Share Document