Design and development of a low cost EMG signal acquisition system using surface EMG electrode

Author(s):  
T. S. Poo ◽  
K. Sundaraj
Author(s):  
Uvanesh K. ◽  
Suraj Kumar Nayak ◽  
Biswajeet Champaty ◽  
Goutam Thakur ◽  
Biswajit Mohapatra ◽  
...  

Surface EMG (sEMG) signals from the palmaris longus, flexor carpi radialis and flexor carpi ulnaris muscles were recorded using an in-house developed EMG signal acquisition system. The bandwidth of the acquisition system was 1500 Hz. The extracted sEMG signal was processed using Discrete Wavelet Transform (DWT). The features of the extracted and the wavelet processed signals were determined and were used for probable classification using Artificial Neural Network (ANN). A classification efficiency of more than 90% was achieved using ANN classifiers. The results suggested that the sEMG may be successfully used for designing efficient control system.


Author(s):  
Kasun Samarawickrama ◽  
◽  
Sadun Ranasinghe ◽  
Yasoja Wickramasinghe ◽  
Wageesha Mallehevidana ◽  
...  

Author(s):  
Sandra D'Souza ◽  
N. Sriraam

The design and development of cost effective rehabilitation aids is a challenging task for biomedical research community. The biopotentials such as EEG, EMG, ECG and EOG that are generated from human body help in controlling the external electronic devices. In the recent years, the EOG based assistive devices have gained importance in assisting paralyzed patients, due to their ability to perform operations controlled by retinal movements. This paper proposes a cost effective design and development of EOG signal acquisition system using virtual instrumentation. The hardware design comprises of two instrumentation amplifiers using AD620 for registering horizontal and vertical eye movements and filter circuits. A virtual instrumentation based front panel is designed to interface the hardware and to display the EOG signals. The resultant digitized EOG signal is further enhanced for driving assistive devices. The proposed EOG system makes use of virtual instrumentation and hence minimizes the design cost and increases the flexibility of the instrument. This paper presents the initial part of the research work which is aiming at a cost effective complete assistive device based on extracting the useful information from the eye movements. The qualitative validation of EOG signals recorded ensures the cost effective healthcare delivery for rehabilitation applications.


Sign in / Sign up

Export Citation Format

Share Document