Unit Gain Characteristic based Resonant frequency Tracking for DC Transformer Operation

Author(s):  
Yuqi Wei ◽  
Alan Mantooth
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2160
Author(s):  
Yu Tang ◽  
Dekai Kong ◽  
Chenxu Duan ◽  
Hao Sun

In recent years, the LLC (inductor–inductor–capacitor) DC transformer has been widely used in communication and computer power supply because of its advantages of zero voltage conduction of primary switch and zero current turn off concerning the output rectifier diode. To obtain higher transmission efficiency and make the LLC DC transformer always run at the optimal operating point, the switching frequency of the LLC DC transformer should work at the resonance frequency of the circuit. In actual conditions, the optimal operating frequency of the LLC DC transformer will be changed due to the influences of the working condition on the circuit parameters and the load change. Therefore, the LLC DC transformer controlled by the fixed frequency mode will not be in the best working condition. In this paper, an adaptive frequency tracking method is used to control the circuit; when the circuit parameters change, the LLC DC transformer can always be in the best working state. Then, the influence of circuit parameters such as output power and excitation inductor on the optimal working point of the LLC DC transformer is analyzed in detail. Finally, a 1 kW LLC resonant converter prototype is designed under laboratory conditions to verify the feasibility of the control strategy.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1303
Author(s):  
Do-Hyun Kim ◽  
Min-Soo Kim ◽  
Hee-Je Kim

The wireless power transfer (WPT) system has attracted attention for energy transmission without physical contact. However, a WPT system has low coupling condition because of a big air gap between transmitter and receiver coils. The low coupling condition has a high leakage inductance. To overcome this problem, we design a proposed system for WPT using series-series (S-S) topology of one resonant circuit. To obtain the higher efficiency power conversion of the WPT system, it has to operate the resonant frequency in the zero phase angle (ZPA) point even under mutual coefficient and load variation. Therefore, we propose the resonant frequency tracking algorithm to operate ZPA point based on the second order generalized integrator-frequency locked loop (SOGI-FLL) method. This proposed frequency-tracking algorithm can estimate ZPA point by changing switching frequency. We can reduce the switching loss with this proposed algorithm and improve the low conversion efficiency of the WPT system. The performance of the proposed frequency-tracking algorithm is automatically verified through various coupling coefficients and the load variation.


Sign in / Sign up

Export Citation Format

Share Document