A Bi-directional Resonant Converter with Automatic Resonant Frequency Tracking for DC Transformer Operation

Author(s):  
Yuqi Wei ◽  
Alan Mantooth
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2160
Author(s):  
Yu Tang ◽  
Dekai Kong ◽  
Chenxu Duan ◽  
Hao Sun

In recent years, the LLC (inductor–inductor–capacitor) DC transformer has been widely used in communication and computer power supply because of its advantages of zero voltage conduction of primary switch and zero current turn off concerning the output rectifier diode. To obtain higher transmission efficiency and make the LLC DC transformer always run at the optimal operating point, the switching frequency of the LLC DC transformer should work at the resonance frequency of the circuit. In actual conditions, the optimal operating frequency of the LLC DC transformer will be changed due to the influences of the working condition on the circuit parameters and the load change. Therefore, the LLC DC transformer controlled by the fixed frequency mode will not be in the best working condition. In this paper, an adaptive frequency tracking method is used to control the circuit; when the circuit parameters change, the LLC DC transformer can always be in the best working state. Then, the influence of circuit parameters such as output power and excitation inductor on the optimal working point of the LLC DC transformer is analyzed in detail. Finally, a 1 kW LLC resonant converter prototype is designed under laboratory conditions to verify the feasibility of the control strategy.


2013 ◽  
Vol 705 ◽  
pp. 258-263
Author(s):  
Fahimullah Khan ◽  
Yong Zhu ◽  
Jun Wei Lu ◽  
Dzung Dao

In this paper, a novel MEMS based LLC converter is proposed for on chip power supplies. The design is optimized based on commercially available Metal MUMPs process for fabrication. The resonant frequency is optimized at 20MHz and MEMS based variable capacitor is fabricated on the chip to tune the peak resonance frequency of circuit which varies due to the load variations. The Design is simulated in FEM based numerical software COMSOL and Intellisuite. According to analysis the magnetizing inductance of 42nH and leakage inductance of 40nH has been achieved from 16 mm2 rectangular coil transformer. The total capacitance of 1500pF has been achieved from parallel plate capacitors and variation of 3pF has been achieved from variable capacitor.


2021 ◽  
Author(s):  
Yineng Shi ◽  
Shuai Shao ◽  
Xin Wang ◽  
Wentao Cui ◽  
Junming Zhang

Sign in / Sign up

Export Citation Format

Share Document