Study on power grid dynamic optimal allocation of reactive power capacity considering the economic loss of voltage sag

Author(s):  
Yi Chen ◽  
Yanbo Chen ◽  
Jin Ma
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Author(s):  
Mingwen Zhuang ◽  
Jingteng Chen ◽  
Minhui Wu ◽  
Huibin Li ◽  
Liqian Lin ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3112
Author(s):  
Donghyeon Lee ◽  
Seungwan Son ◽  
Insu Kim

Widespread interest in environmental issues is growing. Many studies have examined the effect of distributed generation (DG) from renewable energy resources on the electric power grid. For example, various studies efficiently connect growing DG to the current electric power grid. Accordingly, the objective of this study is to present an algorithm that determines DG location and capacity. For this purpose, this study combines particle swarm optimization (PSO) and the Volt/Var control (VVC) of DG while regulating the voltage magnitude within the allowable variation (e.g., ±5%). For practical optimization, the PSO algorithm is enhanced by applying load profile data (e.g., 24-h data). The objective function (OF) in the proposed PSO method considers voltage variations, line losses, and economic aspects of deploying large-capacity DG (e.g., installation costs) to transmission networks. The case studies validate the proposed method (i.e., optimal allocation of DG with the capability of VVC with PSO) by applying the proposed OF to the PSO that finds the optimal DG capacity and location in various scenarios (e.g., the IEEE 14- and 30-bus test feeders). This study then uses VVC to compare the voltage profile, loss, and installation cost improved by DG to a grid without DG.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


Sign in / Sign up

Export Citation Format

Share Document