Control strategy research on frequency regulation of power system considering Electric vehicles

Author(s):  
Chenchen Chen ◽  
Chunlin Guo ◽  
Zhou Man ◽  
Xin Tong
2011 ◽  
Vol 383-390 ◽  
pp. 4151-4157
Author(s):  
Wen Qi Tian ◽  
Jing Han He ◽  
Jiu Chun Jiang ◽  
Cheng Gang Du

With the increase of new energy power generation, the requirement of smart grid and the popularity of electric vehicles, the research focus on V2G. With Electric vehicles being distributed energy storage or distributed generation, peak regulation in power system is involved in important functions of V2G. In order to achieve peak regulation function, the paper has analyzed the control relationship between the electric vehicles, V2G station and electric vehicle charge\ discharge control center, presented charge and discharge control strategy based on the two levels of electric vehicle charge\discharging control center and V2G station control layer and introduced algorithms and examples to achieve these strategies.


Energies ◽  
2017 ◽  
Vol 10 (5) ◽  
pp. 621 ◽  
Author(s):  
Yunpeng Guo ◽  
Liyan Zhang ◽  
Junhua Zhao ◽  
Fushuan Wen ◽  
Abdus Salam ◽  
...  

2019 ◽  
Vol 11 (16) ◽  
pp. 4317 ◽  
Author(s):  
Fazel Mohammadi ◽  
Gholam-Abbas Nazri ◽  
Mehrdad Saif

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential of providing frequency regulation due to the adjustment of power charging. Based on the stochastic nature of the daily mileage and the arrival and departure time of Electric Vehicles (EVs), a precise bidirectional charging control strategy of plug-in hybrid electric vehicles by considering the State of Charge (SoC) of the batteries and simultaneous voltage and frequency regulation is presented in this paper. The proposed strategy can control the batteries charge which are connected to the grid, and simultaneously regulate the voltage and frequency of the power grid during the charging time based on the available power when different events occur over a 24-h period. The simulation results prove the validity of the proposed control strategy in coordinating plug-in hybrid electric vehicles aggregations and its significant contribution to the peak reduction, as well as power quality improvement. The case study in this paper consists of detailed models of Distributed Energy Resources (DERs), diesel generator and wind farm, a generic aggregation of EVs with various charging profiles, and different loads. The test system is simulated and analyzed in MATLAB/SIMULINK software.


Sign in / Sign up

Export Citation Format

Share Document